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Abstract 

 
Statistical control charts are often used to detect a change in an otherwise stable 

process.  This process may contain several variables affecting process stability.  The goal 

of any control chart is to detect an out-of-control state quickly and provide insight on 

when the process actually changed.  This reduces the off-line time the quality engineer 

spends assigning causality.  In this research, a multivariate magnitude robust chart 

(MMRC) was developed using a change point model and a likelihood-ratio approach.  

Here the process is considered in-control until one or more normally distributed process 

variables permanently and suddenly shifts to out-of-control, stable value.  Using average 

run length (ARL) performance and the relative mean index (RMI), the MMRC is 

compared to the multivariate cumulative sum (MC1) and the multivariate exponentially 

weighted moving average (MEWMA).  These results show the MMRC performs 

favorably to the MC1 and MEWMA when the process is initially in-control before 

shifting out-of-control.  Additionally, the MMRC provides an estimate for the change 

point and out-of-control mean vector.  This change point estimator is shown effective for 

medium to large sudden mean shifts. 
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A MULTIVARIATE MAGNITUDE ROBUST CONTROL CHART 
FOR 

MEAN SHIFT DETECTION AND CHANGE POINT ESTIMATION 
 
 
 

 I.  Introduction 

1.1 What is Quality? 

Everybody has a personal understanding of what quality is, but very few have a 

concrete definition of it.  The cliché, “I'll know quality when I see it,” sums this up 

nicely.  For example, let’s take a look at the automotive industry.  I could argue a 

Mercedes-Benz is a higher quality vehicle because of its bigger engine, leather interior 

and higher price, and a Toyota is a lower quality vehicle for its smaller engine, cloth 

interior, and lower price.  If this is true, why do both J.D. Power and Associates and 

Consumer Reports conclude Mercedes-Benz produces poor quality cars?  They simply 

surveyed recent owners about defects and problems and the Toyota owners found fewer 

problems with their cars.  This is the difference between the qualitative and quantitative 

aspects of quality.  While one can like the qualitative feel of leather and surge of power 

driving a high performance car, one also understand better quality materials do not 

translate into superior engineering and manufacturing. 

In 1925, Walter Shewhart of Bell Laboratories (Bell Labs) was grappling with the 

same problems.  Bell Labs was a joint venture between AT&T and Western Electric to 

conduct research for both companies.  At the time, the phone companies manufactured 

the phones and leased them to customers.  When a phone malfunctioned the phone 
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company had to fix it at no charge to the consumer.  The fewer malfunctioned phones 

meant the more money the phone company made.  Quality control then consisted of 

testing a phone after manufacture, and fixing the phones with defects.  The idea of quality 

monitoring throughout the manufacturing process did not exist. 

Shewhart [16] took his training in statistics and outlined his manifesto on what 

defines quality in a manufacturing setting.  He believed the highest goal in manufacturing 

was to create variation-free products identical to the engineering specifications.  In 

addition, he broke down the quantitative sources of variability even further into 

controllable and uncontrollable variables (see Figure 1.1).  Most relevant to a quality 

engineer (QE) are the controllable variables, such as stir rate, pressure and feed rate.  By 

properly setting these variables, a QE can maintain the product or process in statistical 

control.  Unfortunately, known, uncontrollable variables such weather and different 

batches of raw material can directly affect the variability of a product.  Since these 

variables are known, they are measurable and often a QE can compensate by adjusting 

the controllable variables.  There are factors affecting our process we cannot measure 

because we are not aware of them, and therefore these factors are unknown.  If the correct 

known variables are incorporated into the process, these unknown variables are assumed 

to be white noise distributed according to some statistical distribution (i.e. Normal).  

Although these ideas are relatively standard today, they were revolutionary for changing 

the view of quality in manufacturing. 
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Quantitative 

Uncontrollable Controllable 

Known Unknown

Figure 1.1:  Factors Classification 

1.2 Phase I 

Phase I in statistical process control is an experimental study on the nature of the 

process you are trying to monitor.  A process is defined as something with a desired and 

measurable target value evolving over time.  Process examples range from count data like 

scratches on a desk to the width of lumber at a mill and intangible data like heart rate and 

microprocessor switching frequency.  These target values are generally either a target 

mean or target variance, although one can use a target median or a linear/nonlinear 

model.  As a result, this thesis uses the generic term ‘process’ to include all possibilities. 

Phase I generally occurs prior to a process is coming online.  In this phase the 

QE’s job is to determine the nature of the process he/she wants to monitor.  This is 

usually accomplished through experimentation and/or the use of historical data. 

The preferred method involves a series of designed experiments to understand 

what factors affect the process, and their statistical distribution.  Once the factors are 

discovered, a response surface study is conducted to optimize the controllable factors to 

the desired outcome.  Since the QE is involved in every step of data collection, he/she 

receives exactly the data required, and possesses in-depth knowledge of the data 
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collection techniques and understands the overall data quality.  Unfortunately, this 

process generally involves non-trivial expense of time and money. 

If the QE has neither the time or money resources available, he/she can analyze 

historical data in lieu of experimentation.  While this data is usually ‘free’ because it does 

not cost any additional time or money to collect, the QE often has little to no knowledge 

about the process used to collect this data.  As a result of this limited knowledge, the data 

quality is automatically in question. 

The ideal situation is when the QE has both historical data and the budget to 

experiment.  If the historical data is verified and validated by experimentation, then the 

QE has a larger data set to work with than just experimentation alone.  Clearly, having a 

large amount of reliable data gives the QE considerable insight into the studied process.  

Regardless of the data collection method, a particular control chart is selected or 

developed to best maintain the target value.  Then, once Phase I is complete, Phase II 

monitoring can begin.  

1.3 Phase II 

In Phase II, the process has completed enough tests and experiments to begin 

monitoring using a control chart.  Here the process is well understood and with each new 

set of observations, we are trying to answer three questions.  The first question is:  “Did 

the process change?”  This question then begets two other questions:  “If the process did 

actually change, when did it change and what was the cause?”  Basically, just because the 

chart gives a process out-of-control signal does not mean the QE knows when or why.  

Unless the chart used has a change point estimator developed for it, he/she is often left 
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looking to the chart and making an educated guess about the change point.  In fact, even 

with an accurate change point estimator the QE still has to determine causality.  This 

involves investigating the sequence of events, such as a change in raw material supplier 

or tool wear, causing the chart to signal. 

1.3.1 Shewhart X  Control Chart 
 

The X  control chart developed by Shewhart [17] monitors whether the process 

mean is in or out of statistical control.  Statistically speaking, this translates into the 

following hypotheses 

0 0:H μ μ=  

0:aH μ μ≠  
 
where 0μ  is the desired in-control mean and μ  is the true mean.  The null hypothesis, 

denoted by , states the process is currently in-control and the alternative hypothesis, 

denoted by , states the process is currently out-of-control.  The statistic used to test 

 versus  is the sample subgroup mean 

0H

aH

0H aH

1

1 n

t i
i

tX x
n =

= ∑ . 

Here tX  is the average of n measurements at time or observation point t ranging from 

one to the most recent observation.  Additionally, the X  control chart assumes all itx  

values are normally distributed with mean, μ , and variance, 2σ , ( )( )2~ ,itx N μ σ .  

Since the observations are normally distributed, the QE can test whether tX  at each t is 

within plus or minus L standard deviations, σ , of μ  ( )tX Lσ± .  If any tX Lσ>  or 

5 



tX Lσ< − , then  is rejected in favor  and the process is potentially out-of-control.  

Essentially, the 

0H aH

X  control chart is a series of sequential hypothesis tests. 

How does the QE set the value for L?  If the data is distributed standard normal, 

, L corresponds to the normal distribution inverse of one-half of the 

probability of declaring a process out-of-control when it is actually in-control.  For 

example, a probability of .0027 corresponds to the standard normal inverse of .00135 

resulting in L = 3.  This equates to a rate of 1/.0027 or an average of one false alarm for 

every 370 observations.  These standard normal inverse values are easily obtainable from 

any standard statistics text or software package. 

( )( ~ 0,1itx N )

For example, Figure 1.2 shows a single run of the X  control chart.  The green 

dots are from an in-control distribution and the red dots are from an out-of-control 

process shifted by one positive standard deviation.  The brown line is the actual change 

point, denoted as τ .  The dashed line after t = 20 indicates the one standard deviation 

sudden mean shift, or out-of-control value of the mean.  The two parallel blue lines are 

the upper and lower control limits (UCL/LCL) corresponding to Lσ± .  If the charting 

statistic exceeds the UCL/LCL, then the chart has signaled indicating a potential out-of-

control process.  Each dot represents the discrete calculation of the charting statistic. 
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Figure 1.2:  X  Control Chart Example 

 

For this X  chart, the charting statistic is the standardized sample mean, 
ˆ

ˆ
tX μ
σ
− , where 

μ̂  and σ̂  are the estimates obtained from Phase I and the subgroup size n = 1.  Thus the 

mean should equal zero and the standard deviation/variance should equal one.  As one 

can see, the green line varies randomly about zero whereas the red line barely goes below 

zero just once.  Finally, the 26th observation exceeds the UCL and the chart signals.  The 

QE then has to answer the questions of when and why.  After causality is discovered and 

the problem is rectified, the chart is restarted and monitoring continues until the next 

signal. 

1.3.2 Average Run Length 
 

The average run length (ARL) is the expected number of observations required 

until the chart signals.  The two types of ARLs are the in-control ARL (ARL0) and the 

out-of-control ARL.  ARL0 is the average time to a false alarm when the process remains 

in-control given a specified UCL/LCL.  The out-of-control ARL, on the other hand, is the 
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time it takes for the chart to signal after a change has occurred.  In an ideal situation, 

ARL0 is infinity while the out-of-control ARL is the first observation after the change 

occurred.  In reality, false alarms occur in every process, and the in-control and out-of-

control ARLs are manipulated on the basis of the UCL/LCL. 

In order to compare control charts, ARLs are used.  By calibrating all the charts to 

the same ARL0, the different charts are compared side by side to determine which signals 

quicker under different change magnitudes.  Thus, competing charts are comparable 

using an apples to apples approach. 

Table 1.1 shows an example ARL comparison between the magnitude robust and 

the cumulative sum (CUSUM) charts.  The quality characteristic in both charts is 

distributed standard normal and the results are for a sudden mean shift or out-of-control 

value of the mean.  The other details of these charts are unimportant for this example and 

are discussed in later chapters.  The top row of Table 1.1 gives the mean shift on the left 

and the ARL performance for each chart on the right corresponding to the particular 

mean shift.  Note the mean shift equaling 0.00 is the in-control ARL, ARL0.  The bottom 

row of the table contains the control limit (CL) for each chart.  Unlike the X  chart, these 

two charts only have one CL.  Notice the CUSUM requires fewer observations to detect 

for the 1.00 and 1.50 mean shift, but for all other shifts, the magnitude robust takes fewer 

observations to detect.  Unless the ability to detect a mean shift of 1.00 or 1.50 is 

particularly import to the QE, the magnitude robust chart is the superior chart in terms of 

ARL performance.  This type of evaluation is used to compare many types of charts. 
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Table 1.1:  ARL Comparison Example 

mean shift magnitude robust CUSUM (k=.5)
0.00 200.00 200.00 
0.50 24.73 25.28 
1.00 8.28 7.72 
1.50 4.42 4.33 
2.00 2.87 3.05 
2.50 2.09 2.40 
3.00 1.63 2.01 
3.50 1.36 1.76 
4.00 1.18 1.56 

  CL = 4.87 CL = 4.00 
*from:  Pignatiello and Simpson [12] 

1.4 Multivariate vs. Multiple Univariate Charts 

As systems become more complex, there is a need to monitor more and more 

variables within a system.  The simplest and most straightforward way to accomplish this 

is to use multiple univariate charts and stop when one of the charts signals.  Although this 

does provide quality control, it does have two major drawbacks.  First, the ARL0 of a 

group of control charts running in parallel is lower than a single chart because when one 

chart in the group signals, the whole process signals.  This leads to the QE chasing down 

false alarms more frequently.  Consequently, either you have to live with a higher false 

alarm rate or increase the UCL/LCL width and sacrifice quick detection.  Both of these 

are highly undesirable.  Secondly, cross-correlation between variables is not considered 

when employing several univariate control charts simultaneously.  This is a highly 

dubious omission because variables of a process are often correlated.  Both problems are 

eliminated with multivariate control charts. 

1.4.1 Shift Detection Differences 
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Previous studies show the general superiority of multivariate charts to multiple 

univariate charts in terms of ARL performance.  Take the multivariate CUSUM chart by 

Pignatiello and Runger [11] versus the multiple univariate chart by Woodall and Ncube 

[18].  Pignatiello and Runger show their chart is more efficient than the Woodall and 

Ncube’s even though the variables are simulated as independent and the covariance 

matrix is the identity matrix (see discussion below).  As a result, a QE should not equate 

the performance of a multiple univariate chart to its multivariate extension. 

1.4.2 Variable Correlation 
 

To begin, suppose there are two variables to keep in statistical control and the in-

control mean is zero, .  If we assume no correlation then the distance from the 

center is: 

[ ]0 0,0 ′=μ

 ( ) 2
e i

i

D x= ∑x  (1.1)

 
where the e stands for the Euclidean distance from the center, each ix  is the observation 

of the ith variable in the process and x  is the vector containing the ix  values.  Thus, the 

 vectors [ ] , [ ] , x 0, 1 ′− 1,0 ′− 2, 2 ′⎡ ⎤
⎣ ⎦  and 2, 2 ′⎡ ⎤−⎣ ⎦  are all equidistant from 0μ  at a 

distance equal to one.  These distances are depicted as a contour plot in Figure 1.3. 
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Figure 1.3:  Euclidean Distance 

 

If 1x  and 2x  are correlated by the covariance matrix 
1 .5
.5 1
⎡ ⎤

Σ = ⎢ ⎥
⎣ ⎦

, then one must use the 

Mahalanobis distance: 

 ( ) ( )1
0 0mD −′= x - μ Σ x - μ  (1.2)

 
Note  equals  when eD mD Σ  is the identity matrix.  In this two-variable illustration,  

simplifies to 

mD

2 2
1 2 1 2x x x x+ + .  When graphed, we obtain the series of ellipsoids in Figure 

1.4. 
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Figure 1.4:  Mahalanobis Distance 

 
Since the values are correlated, changes with a like direction have a greater distance, and 

changes in opposite directions have a shorter distance.  Clearly, if you assume Figure 1.3 

is true in your charting statistic when Figure 1.4 is reality, then your ARL0 will vary 

depending on the mean shift direction.  This is known as a directionally variant chart.  

However if the covariance is included, then the correct distance is calculated regardless 

of the mean shift direction.  This means the chart has the desirable property of directional 

invariance with a stable, constant ARL0. 

The main disadvantage of using a multivariate chart is the difficulty in finding 

causality when the chart signals.  Namely, the difficulty is in pinpointing the exact out-of-

control variable(s) even with an accurate change point estimator.  To get around this 

problem, most QE’s run the univariate charts in parallel.  Then when the multivariate 

chart signals, he/she can look at the univariate charts to find the variable(s) causing the 

signal. 
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1.5 Problem Definition 

Currently, the two multivariate charts with the best ARL performance are the 

multivariate CUSUM (MC1) developed by Pignatiello and Runger [11] and the 

multivariate exponentially weighted moving average (MEWMA) chart developed by 

Lowry et al. [8] (described in Sections 3.7.1 and 3.7.2).  Both charts are true multivariate 

charts because they consider cross-correlation by incorporating the covariance matrix.  

However, the main limitation of these charts is they require tuning to a specific mean 

shift with the MC1 or narrow range of mean shifts with the MEWMA.  Furthermore, 

neither paper gives an estimate for the change point.  The problem becomes to develop a 

true multivariate chart robust to a wide range of mean shifts, and once the chart signals, 

provide an estimate for the unknown change point. 

1.6 Research Objectives and Assumptions 

The objectives of this research are as follows: 
 

1. Derive the multivariate magnitude robust chart (MMRC) by extending the 

univariate magnitude robust chart (UMRC) developed by Pignatiello and Simpson 

[12] into the multivariate realm. 

2. Using the method of maximum likelihood estimation (MLE), derive change point 

estimators for the true change point and out-of-control mean vector in the 

MMRC. 

3. Develop a heuristic program and regression equation to provide estimates for 

MMRC control limits. 
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4. Use Monte Carlo simulation and the Relative Mean Index (RMI) to compare the 

MMRC to the MC1 developed by Pignatiello and Runger [11] and MEWMA 

developed by Lowry et al. [8] in terms of ARL performance. 

5. Use Monte Carlo simulation to present and evaluate the performance of the 

derived MMRC change point estimator. 

This research effort will investigate the ARL performance of the MMRC, MC1 and 

MEWMA under the following assumptions: 

1. All simulated observations are assumed to be taken from the multivariate normal 

distribution and have a known or properly estimated in-control mean vector and 

covariance matrix. 

2. The process is assumed to have a sudden shift of the in-control mean vector, also 

called a step change.  In other words, the process has a steady in-control mean 

vector from zero up to some point in time, τ , where the process mean suddenly 

shifts to a steady out-of-control mean vector and remains this way until corrected 

by the QE. 

1.7 Thesis Organization 

This thesis is divided in to five chapters.  Chapter I presented the history and 

background for SPC with a special emphasis on control charts.  Next, the added 

complexities of multivariate versus multiple univariate charts were discussed and the 

current problem for this thesis effort was introduced.  Chapter II will review relevant 

literature in univariate control charts, multivariate control charts and comparisons among 

multiple charts.  Chapter III gives the mathematical foundation for the UMRC and 
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MMRC, and it discusses the MC1 developed by Pignatiello and Runger [11] and the 

MEWMA developed by Lowry et al. [8].  Chapter IV presents the simulation model and 

the results based on the mathematical foundation derived in Chapter III.  Chapter V gives 

conclusions and recommendations for the QE and presents some areas for future 

research. 
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II.  Literature Review 

2.1 Introduction 

Most of the research falls into one of three categories.  The first category is 

univariate SPC where a process is assumed to only have one variable.  These are the 

papers forming the basis of all SPC and as a result, the univariate case is well studied in 

many top journals (Technometrics, Journal of Quality Technology, etc.).  The next 

category is the extension of univariate SPC into the multivariate realm.  Often there are 

multiple approaches for a single extension.  For example, both Crosier [1] and Pignatiello 

and Runger [11] developed a multivariate extension to the CUSUM control chart.  Finally 

there are published articles summarizing and comparing current multivariate approaches 

to process monitoring.  In these papers, authors pick a particular SPC topic such as ARL 

performance and compare newer SPC research with older more established SPC research.  

This chapter reviews all three categories of research in chronological order within each 

category. 

2.2 Univariate Control Charts 

Shewhart [16] published a three page paper on the desire of a manufacturer to 

create uniform items free of variation.  Even if the manufacturer can create a uniform 

product initially, changes in weather, people, raw material, etc. can vary the uniformity of 

the product.  To rectify this problem, he suggested setting tolerance specifications within 

 standard deviations around a specified target mean.  Additionally, he stated without 

proof, one could calculate the probability of producing a unit within these tolerance 

specifications about the mean. 

L
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After this probability is discussed, he stated, “A constant system of causes always 

exists after causes which are a function of time have been eliminated”.  In other words, he 

suggested once all of the non-random factors are accounted for, the process follows a 

known probability distribution.  Once this distribution is found, a goodness of fit test 

could be used at each sample observation to test whether this observation follows the 

known distribution.  This statistical test tests two hypotheses.  Under the null hypothesis 

the observations follow the known probability distribution indicating an in-control 

process, and under the alternative hypothesis the observations do not follow the known 

probability distribution indicating an out-of-control process.  If the test fails the null 

hypothesis, then the process is considered out-of-control and the QE must find the 

causality.  Ultimately, this paper was the first to suggest applying statistical techniques to 

quality control. 

After six years, Shewhart [17] completed a book on the “why” and “how” of 

statistical process control.  Half of the book is his motivation for quality control.  The rest 

of the book is dedicated to his control chart, now known as the Shewhart X  control 

chart.  Here Shewhart had the chart signal when the most recent observation or mean of 

simultaneous observations went beyond a specified number of standard deviation units 

from a specified sample mean.  This simplification allowed a non-statistician to 

administer and interpret the control chart and report when the chart signals. 

In 1954, Page [9] asked and answered the question:  Can the previous 

observations help us create a better chart?  In his paper, Page established a new univariate 

control cart called the cumulative sum (CUSUM), and then later refined it (Page [10]).  
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Instead of relying solely on the most recent observation, Page’s chart used the following 

two-sided cumulative sum scheme 

) k where ( )
1

t

t i
i

S x+

=

= −∑  (max ,0tS +

to detect positive out-of-control shifts of the mean and 

( )min ,0tS −  where ( )
1

t

t i
i

S x−

=

k= +∑  

to detect negative out-of-control shifts of the mean.  Here tS −  and tS +  are the CUSUM 

statistics at time t, k is a tuning parameter tuned to the mean shift the QE wants to detect, 

and xi is the ith observation of the quality characteristic with.  If either  or  

occurs, the chart signals indicating a possible out-of-control process.  Once the chart 

signals, the change point estimator is the last time the charting statistic was zero. 

tS − < h tS h+ >

Tuned properly, the standard normal CUSUM (i.e. k = 0.50, h = 4) chart detects 

smaller mean shifts more quickly than the Shewhart X  control chart, but is slower to 

detect large mean shifts of two standard deviations or greater.  Unfortunately, most of the 

time the QE will have no knowledge about this mean shift.  As a result, if one incorrectly 

calibrates the CUSUM, then the small shift detection capabilities can become degraded.  

Even with these shortcomings, the CUSUM is widely regarded as a significant 

advancement in the field of control charts. 

Roberts [13] later came up with a different approach to using previous data, the 

geometric moving average chart.  This approach is so called because he used a geometric 

moving average to develop the charting statistic:  

 ( ) ( )1(1 )i i iZ r rX r Z r−= + −  (2.1)
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where r is the amount between zero and one and the ith (i = {0,1,…n}) subgroup mean, 

iX , is weighted against the previous  calculation, .  Furthermore, iZ 1−iZ 0Z  is the in-

control mean, n is the most recent observation and the chart signals when the first nZ  

exceeds the CL.  Note the Shewhart X  chart is a special case of the EWMA chart when r 

= 1.  To illustrate the chart’s effectiveness with regards to change detection, Roberts 

studied ARL performance for different values of r.  While a completely different 

approach than the CUSUM, this chart is well known to provide strikingly similar 

performance.  Over time, the chart’s name changed to the exponentially weighted moving 

average (EWMA) chart, and the chart is commonly used today. 

The fourth major chart is the UMRC by Pignatiello and Simpson [12].  Unlike the 

CUSUM and EWMA, the UMRC does not use a weighted or cumulative sum in its 

calculation.  Instead, it is based on the family of generalized likelihood-ratio (GLR) tests.  

The GLR uses the ratio of the likelihood under Ha over the likelihood under H0 where Ha 

states the process is in-control and H0 states the process is out of control.  If this GLR test 

exceeds some defined threshold, H0 is rejected.  The term generalized in the GLR means 

some of the input variables are unknown and estimated using MLE.  For SPC control 

charts, these unknown input variables are usually the in- and out-of-control variance and 

mean and the change point.  The paper by Hawkins, Qiu and Kang [2] (reviewed later in 

this chapter) assumes the in- and out-of-control variance and mean and the change point 

are unknown.  However, the UMRC is less general because Pignatiello and Simpson 

assumed only the out-of-control mean and the change are unknown.  Additionally, they 

included a change point model into their chart.  The change point model assumes the 
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process mean is in-control up to a point, denoted by τ , when the process mean shifts 

some time between τ  and 1τ +  with 1τ +  as the first observation of the out-of-control 

process.  

In their paper, Pignatiello and Simpson use Monte Carlo simulation to compare 

the ARL performance of the UMRC to the CUSUM.  They show the ARL performance 

of the UMRC is superior any one CUSUM chart over all tested mean shift magnitudes 

even though an accurately tuned CUSUM chart is superior to the UMRC.  Additionally, 

Pignatiello and Simpson’s chart also provides the MLE for the time of the step change.  

This is in contrast to the X  where the quality control engineer has to look at the chart and 

take an educated guess on when the change occurred.  Having an estimate for the process 

change point saves expensive down time as a result of searching for and correcting the 

source of the process change.  The main disadvantage to the UMRC is the increased level 

of computation because the log-likelihood-ratio statistic is evaluated for all possible 

change points.  However, a simple computer program on a modest computer can easily 

perform the required calculations.  The UMRC is discussed in Section 3.2. 

Using generalized likelihood-ratios, Hawkins, Qiu and Kang [2] proposed a 

univariate unknown parameter change point model.  Like Pignatiello and Simpson [12], 

they assumed a change point model.  However, the difference is the process in-control 

and out-of-control means and the process variance are assumed unknown by Hawkins, 

Qiu and Kang.  As a result, the traditional sequence of plugging Phase I values into a 

Phase II process monitoring control chart is not needed.  In fact, they stated monitoring 

can begin on the third observation.  However, they pointed out three observations will 

contain a lot of variance and is not enough data to validate the normality assumptions the 
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chart is based on.  They recommended running the process until the variance stabilizes 

and the normality assumption is verifiable.  Thus, they presented their control chart as a 

seamless transition from Phase I to Phase II. 

To test the null hypothesis the process is in-control versus the alternative 

hypothesis the process is out-of-control, Hawkins, Qiu, and Kang used a two-sample t-

test statistic, denoted as , where j is the candidate change point and n is the most 

recent observation.  Then  is maximized over all possible j from one to n - 1 to obtain 

the maximum separation between the in-control and out-of-control means, and this 

maximum is denoted as .  The chart signals when  exceeds the appropriate CL, 

denoted by h

njT ,

njT ,

nTmax, nTmax,

n, where the value of hn is dependent on the value of n.  Since there was no 

closed-form solution for hn, the paper provided both a closed-form approximation and 

tables obtained through simulation for hn.  Once the chart signals, the j maximizing  is 

the MLE for the true change point. 

njT ,

To counter the need for tuning in the EWMA chart developed by Roberts [13], 

Han and Tsung [3] proposed the generalized EWMA control chart (GEWMA).  This was 

accomplished by modifying the EWMA to: 

( )
1

1inf 1: maxGE nk n
T c n W c

k≤ ≤

⎧ ⎫⎛ ⎞= ≥ ≥⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 

Here  represents the time the chart signals for the infinium of the n( )GET c th observation 

where the absolute value of charting statistic, 1
nW

k
⎛ ⎞
⎜ ⎟
⎝ ⎠

, maximized over all values of k (k 

= {1,2,…,n}) exceeds the CL c.  1
nW

k
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is defined as  
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 is the 

same equation as Robert’s EMWA in (2.1) except Han and Tsung only considered 

individual observations, not subgroup means.  In their paper, Han and Tsung used Monte 

Carlo simulation to show the ARL performance of the GEWMA is superior to the 

optimal EWMA developed by Wu [19] for all mean shifts and the CUSUM developed by 

Page [9] for any mean shift not between the interval (0.7842δ ,1.3798δ ) where δ  is the 

predicted mean shift.  Essentially, the authors took the EWMA and made it robust to a 

wider array of potential mean shifts. 

2.3 Multivariate Control Charts 

Hotelling [5] developed the first multivariate chart in 1947 to improve the testing 

of bombsights.  Using Shewhart’s X  control chart as a basis, Hotelling modified the 

chart to allow for a vector of observations.  Additionally, he recognized the possibility of 

correlated quality measures, and therefore included a covariance matrix into his T2 

statistic.  The use of T in the T2 statistic is significant because it the square of the student-

t statistic.  Like the X  control chart, the T2 chart signaled when the most recent T2 

calculation went beyond some user specified upper or lower control limit.  The 

drawbacks to the T2 control chart were twofold.  First off, it suffered the same poor ARL 
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performance for detecting small shifts as the univariate X  control chart.  Secondly, the 

T2 statistic was more computationally intensive with matrix multiplication, matrix 

inversion, and the required development of the covariance matrix.  Although now a trivial 

issue with computers, these computational issues were a big hindrance to adaptation in 

1947. 

In 1985, Woodall and Ncube [18] created the first multivariate CUSUM control 

chart entitled the MCUSUM chart.  Although called MCUSUM, the chart actually 

consists of multiple univariate CUSUM charts run simultaneously.  Each of these 

CUSUM charts independently monitors each variable within a process.  As the process 

runs, the first of these independent CUSUM charts to signal causes the MCUSUM to 

signal.  Using a Markov chain approach, they showed the MCUSUM is often superior to 

Hotelling’s T2 chart when the monitored quality characteristic is a bivariate normal 

random variable.  The obvious disadvantage of Woodall and Ncube’s chart is the more 

univariate CUSUMs implemented, the worse the ARL performance becomes.  

Additionally, the MCUSUM chart suffers the same tuning issues as the univariate 

CUSUM, and cannot incorporate correlation between process variables.  Most 

importantly, Woodall and Ncube’s article started a renewed interest in multivariate 

charts. 

Inspired by Woodall and Ncube, Crosier [1] created two true multivariate 

CUSUM charts.  The first chart takes the square root of Hotelling’s T2 statistic and used 

this to generate a univariate CUSUM chart.  He entitles this the COT or CUSUM of T.  

The second statistic calculates directly from the vector of observations.  Unfortunately, 

Crosier uses a limited number of runs (≤ 400) in his Monte Carlo studies to come up with 
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his results.  Despite this, Crosier showed the direct multivariate CUSUM chart yields 

superior ARL performance relative to both the COT and MCUSUM. 

Around the same time, Pignatiello and Runger [11] created their own pair of 

multivariate CUSUM charts, entitled the MC1 and MC2.  Although they took a different 

approach than Crosier [1], Pignatiello and Runger discovered the MC1 produces similar 

results to Crosier’s direct multivariate CUSUM.  Unlike Crosier, Pignatiello and Runger 

decided to employ a run size of 6,000 in their Monte Carlo experiments to generate more 

accurate results.  The MC2 chart, while better than Hotelling’s T2 chart, produces inferior 

ARL performance to Woodall and Ncube [18].  Additionally, the paper contains a 

lengthy discussion on the subject of directional invariance, detailing how directional 

invariance maintains consistent ARLs, but hinders diagnosis efforts when the chart 

signals.  The MC1 charting statistic is discussed later in Section 3.7.1. 

After the multivariate CUSUMs were developed by Woodall and Ncube [18], 

Crosier [1] and Pignatiello and Runger [11], Lowry et al. [8] extended the EWMA into 

the multivariate EWMA, denoted by them as the MEWMA.  Unlike the multivariate 

CUSUM schemes, the MEWMA is a direct extension from the univariate case.  By 

incorporating the covariance matrix into its charting statistic calculation, the MEWMA 

allowed for correlation among variables in a process.  Lowry et al. actually created two 

charts based on the derivation of the covariance matrix.  One approach calculated the 

exact covariance, while the other approach used the steady-state covariance.  Of the two 

variance calculations, Lowry et al. showed in their results the superiority of using the 

exact covariance matrix with regards to ARL performance.  Like Pignatiello and Runger, 

Lowry et al. used a Monte Carlo simulation with the same run size of 6,000 to evaluate 
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the ARL performance.  They concluded their chart is superior, in terms of ARL 

performance, to Hotelling’s T2 and the MCUSUM and comparable to Crosier [1] and the 

MC1.  The MEWMA is discussed later in Section 3.7.2. 

An untested parameter in an otherwise comprehensive paper was their choice of 

the simulated change point.  They stated the process is likely to be in-control for a while 

and then go out-of-control, yet they started all of their simulations as out-of-control from 

time zero.  As this thesis shows in Section 4.7, the choice of control limit and the 

resulting in-control ARL is dependent on when the change point actually occurs. 

Runger and Prabhu [14] (1992) used a Markov chain approach to evaluate the 

ARL of the MEWMA control chart.  Using symmetry and orthogonal invariance, they 

generate results within 4% of Lowry et al.  Since their approach was analytical, none of 

the error associated with the Monte Carlo simulations is present. 

Within the last year, Zamba and Hawkins [20] developed a multivariate extension 

to Hawkins, Qiu and Kang [2].  Like Hawkins, Qiu and Kang, they made no assumptions 

about in- and out-of-control mean values and variance.  The method proposed by these 

authors essentially eliminated the Phase I study required by traditional approaches.  In 

order to accomplish this, Zamba and Hawkins split the n observations into two 

subgroups.  Then using maximum likelihood estimation to find the maximum mean 

distance between all possible paired subgroups, they calculated a T2 statistic.  Let n equal 

the number of observations, p equal the number of variables and α  equal the specified 

false alarm rate.  If the T2 statistic is beyond a specified , ,n ph α , then the chart signals.  

Differing from other charts, , ,n ph α  changes over time as a function of n.  Since there is no 
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closed-form solution for the control limits , ,n ph α , for n = 1,2,…, Zamba and Hawkins 

obtained these values using simulation.   

While this chart could readily replace other charts, the authors pointed out the 

existence of situations where a complete Phase I study is necessary and the use of their 

chart as a supplement.  In addition to mean shift detection, their model also gave an 

estimate of the change point τ .  Overall, this paper was a welcome addition to 

multivariate statistical process control, which this thesis is a special case of Zamba and 

Hawkins’ paper. 

2.4 Overview Evaluations 

For univariate charts, Lai [6] provided a theoretical overview of change point 

estimation in-control charts developed up to 1995.  The lack of a built-in change point 

estimator in the X  and other charts presented a major challenge.  Lai surveyed all 

attempts up to publication and combined them into a unified theory.  While Lai’s purpose 

was to present and prove his theory, he presented an extensive bibliography and 

discussion of existing charts. 

In 1995, Lowry and Montgomery [7] presented a review of the state of the art in 

multivariate control charting.  Their paper includes a thorough overview of the 

aforementioned multivariate papers with the exception of Zamba and Hawkins [20], since 

their paper was not yet published.  Some discussion is provided on each control chart 

from an implementation point of view.  In conducting their review, Lowry and 

Montgomery pointed out a couple of areas for future research.  The first is the difficulty 

in interpreting out-of-control signals, and the second is the lack of multivariate charts for 
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monitoring auto correlated data.  Like Lowry and Montgomery, this thesis will compare 

the ARL performance of the multivariate magnitude robust chart to the MC1 and 

MEWMA. 

2.5 Conclusion 

This chapter presented an overview of some relevant past and present papers in 

SPC control charts.  For univariate charts, both the canonical charts like Page’s CUSUM 

and Robert’s EWMA and more recent advances like the GEWMA developed by Han and 

Tsung were reviewed.  Moreover, the review showed the research evolution from 

considering only the most recent observation in Shewhart’s X  control chart to using a 

likelihood-ratio test in Pignatiello and Simpson’s magnitude robust control chart.  Then 

these univariate charts were extended into multivariate space with the exception of 

Pignatiello and Simpson’s control chart.  Zamba and Hawkins proposed a generalized 

approach to the magnitude robust in the multivariate realm, but they do not consider the 

case where the in-control mean and covariance matrix is known.  As a result, this thesis 

extends the univariate magnitude robust control chart of Pignatiello and Simpson, which 

is a special case of Zamba and Hawkin’s method. 

Several of these control charts are interrelated.  First off, Zamba and Hawkin’s 

paper is a generalization of the paper by Hawkins, Qiu, and Kang.  Pignatiello and 

Simpson’s paper is a special case of the method described in Hawkins, Qiu, and Kang’s 

paper.  Again, this thesis is a special case of the method developed by Zamba and 

Hawkins.  Additionally, Pignatiello and Simpson’s paper is a special case of this thesis. 
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III.  Methodology 

3.1 Introduction 

This thesis will fill the gap between the Pignatiello and Simpson [12] UMRC and 

the Zamba and Hawkins [20] unknown parameter change point chart.  In this chapter, the 

UMRC is directly extended into the multivariate realm.  Unlike Zamba and Hawkins, this 

chart will assume a known in-control mean and covariance matrix, which requires a 

Phase I study.  In other words, the MMRC is a special case of the Zamba and Hawkins 

method. 

To develop the MMRC, the UMRC is derived first and then followed by the 

derivation of the MMRC.  In the interest of brevity, these derivations will leave out some 

intermediate steps.  For those interested in the algebraic details of the derivation, refer to 

Appendix A.  These derivations are highly similar because they both involve a 

likelihood-ratio test and MLE.  After deriving both charts, a single run of the MMRC is 

presented and explained.  To wrap up the MMRC, sections 3.5 and 3.6 will deal with the 

issue of specifying the value for the control limit (CL) and the handling of false alarms. 

Since the ARL performance of the MMRC is compared to the ARL performance 

of the MC1 and MEWMA in Chapter IV, both the MC1 and MEWMA are discussed in 

this chapter.  Finally, the RMI by Han and Tsung [4] is introduced.  RMI aids the QE in 

determining the chart possessing superior ARL performance over a range of mean shift 

magnitudes. 
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3.2 The Univariate Magnitude Robust Chart 

The UMRC is based on a change point model and the likelihood-ratio test and 

was developed by Pignatiello and Simpson [12].  This means the process is assumed in-

control up until the change point τ  where the process has a sudden shift in the mean 

between τ  and 1τ + .  As a result, the first observation sampled from the changed process 

is obtained at 1τ + .  Throughout this derivation and the derivation in Section 3.3, the 

index variable denoted by t always refers to a discrete point in time ranging from one to 

the most recent observation T.  Moreover, the index variable c is a candidate change point 

ranging from zero to the observation T - 1.  The likelihood-ratio is used to test the 

hypotheses 

0 0: tH μ μ=  for 1  t T≤ ≤

0:a tH μ μ=  for 1  and t T≤ ≤ t aμ μ=  for 1 t Tτ + ≤ ≤ (3.1)

 
where 0μ  is the in-control mean and aμ  is the out-of-control mean.  Both aμ  and τ  are 

assumed unknown.  Additionally, the UMRC assumes the observations are independent 

and normally distributed. 

To begin, assume the random variable x  represents observations from the 

process.  These observations are normally distributed with the density given by 
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where μ  and σ  are the parameter mean and standard deviation respectively.  Next, the 

likelihood function is formed under the distribution specified by : 0H
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As you can see x  and σ  from the Equation (3.2) were replaced with parameter estimates 

tx  and xσ .  The bar above the x  represents the possibility of using subgroup averages at 

each t point in time.  In other words, over time you should have a vector of means 

[ ]1 2, ,..., Tx x x=x  up to the most recent observation T.  The likelihood function under the 

distribution specified by  is given by aH
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From this point one could theoretically use the ratio  to  as defined.  However, a 

natural log transformation simplifies the math: 
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| 1| log
2

T T
a

e t
t tx

L
R x

L τ τ

τ
τ μ

σ = + = +

⎛ ⎞
= = − − −⎜ ⎟

⎝ ⎠
∑ ∑

x
x

x t ax μ  (3.4)

 
Clearly, R is greater when the subgroup tx  is closer to the alternative mean aμ  due to an 

increase in ( 2
0

1

T

t
t

x
τ

)μ
= +

−∑ .  Thus, a greater R indicates we are more likely to reject H0. 

Even with a likelihood-ratio test in place, the problem of finding estimates for aμ  

and τ  still exist.  Although the true values for aμ  and τ  are assumed unknown, they are 

estimable.  The MLE for aμ  given τ  is 
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μ τ
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Essentially ( )ˆaμ τ  is the overall mean for the T τ−  most recent subgroups.  Substituting 

,Tx τ  into (3.4) and simplifying: 

( ) ( ) ( )22
0 ,2

1 1

1|
2

T T

t t
t tx

R x x τ
τ τ

τ μ
σ = + = +

⎛ ⎞
= − − −⎜ ⎟

⎝ ⎠
∑ ∑x Tx  

 ( )2
, 022 T

x

T x τ
τ μ

σ
−

= −  (3.6)

 
This derivation is the MLE for ( )ˆaμ τ  and its use further simplifies R.  The task now is to 

maximize Equation (3.6) by evaluating it over all possible values of c: 

 

 ( ) ( )2
, 020

| max
2T Tc T

x

T cR R x cτ μ
σ≤ <

−
= = −x . (3.7)

Here τ̂  is the value of τ  maximizing ( )|R τ x  in Equation (3.6). 

Equation (3.7) is equivalent to the original function in (3.3) with a log 

transformation and an estimate for aμ  maximized over the entire range of τ .  When you 

implement TR  as a control chart, the process is assumed in-control until TR  exceeds 

some CL B ( TR  > B).  At this point, H0 is rejected in favor of Ha from the hypotheses in 

(3.1). 

Assuming the chart has signaled, an estimate for τ  is needed.  This estimate is the 

same τ̂  from (3.7).  When computed separately, 

 ( )2
, 020

ˆ arg max
2 T cc T

x

T c xτ μ
σ≤ <

−
= − . (3.8)

 
Next we substitute τ̂  for τ  into (3.5): 
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ˆ 1
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2

T

a T
tx

T
tx xτ

τ

τμ τ
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−
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Both point estimates, τ̂  and ˆaμ , are maximum likelihood estimators for τ  and aμ . 

Currently, no closed-form solution for finding B exists.  Pignatiello and Simpson 

use Monte Carlo simulation to obtain in-control ARL values for specific levels of B in 

Table 3.1. 

B ARL
4.00 78.626
4.25 97.282
4.50 123.666
4.75 152.392
4.87 167.626
5.00 187.604
5.25 232.366
5.50 292.361
5.75 357.632
6.00 457.914  

Table 3.1:  ARL values from Pignatiello and Simpson [12], Table 4 

 
Applying a log transformation and using ordinary least squares on the data shown in 

Table 3.1 generates a regression estimate for B based on a desired ARL0: 

 0log ARL 0.8728ˆ
.8732

eB −
=  (3.10)

 
By inputting an ARL0 ranging from 78.626 to 457.914, a UMRC implementer can obtain 

an appropriate CL estimate, B̂ . 

Implementing the UMRC is fairly straightforward.  First, the QE needs to select 

an appropriate B value from Equation (3.10).  Then as observations come in, compute RT 

using Equation (3.7).  Once the chart signals the value of τ  maximizing RT becomes τ̂  

and is equivalent to Equation (3.8).  As a result, there is no need to explicitly calculate 
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(3.8).  Now input τ̂  into Equation (3.9) to obtain an MLE for ˆaμ  given τ̂ .  Repeat this 

process at every chart signal and the chart is fully implemented. 

3.3 The Multivariate Magnitude Robust Chart 

Having derived the UMRC, this chart is now extended to the multivariate case 

using a similar process with p variables where τ , c, t and T are as previously defined.  

Again, a multivariate normal distribution is assumed for random variable vector x with 

the following probability density function 

 ( )
( )

( ) ( )1
1

2 2

1 1 '; , exp
22

pf
π

−⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

x μ S x μ S x μ
S

 (3.11)

 
where 1 2, ,..., px x x′ ⎡= ⎣x ⎤⎦  is a 1 by p vector of observations, 1 2, ,..., pμ μ μ′ ⎡ ⎤= ⎣ ⎦μ  is a 1 by 

p vector of means and S is a p by p covariance matrix.  In the literature, S is generally 

symbolized by , but to reduce confusion with the summation symbol, S is used instead. Σ

The MMRC has the same hypothesis test as (3.1); however, parameter vectors are 

considered instead of scalars: 

0 : tH = 0μ μ  for 1  t T≤ ≤
:a tH = 0μ μ  for 1 t τ≤ ≤  and =t aμ μ  for 1 t Tτ + ≤ ≤ (3.12)

 
Like the UMRC, the MMRC employs a change point model and likelihood-ratio 

test to derive the test statistic.  Using (3.11), the likelihood function under  is 0H

( )
( )

( ) ( )1
0 1

221

1 1exp
22

T

t tp
t

L
π

−

=

⎧ ⎫′= − − −⎨ ⎬
⎩ ⎭

∏ 0 0X x μ S x μ
S

 

where X is the matrix containing the  vectors.  Under , the likelihood function is tx aH
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Now take the ratio of  to : aL 0L
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Equation (3.13) is the multivariate equivalent of (3.3).  Likewise, this function is 

simplified using a log transformation: 

( ) ( ) ( ) ( ) ( )1 1
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1| log
2

T
a

e t t t t
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L τ

τ − −

= +
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1 1

1 2 2
2
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t t
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T T
τ τ
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= + = +

⎡ ⎤′ ′ ′ ′= − − + − −⎢ ⎥
⎣ ⎦

∑ ∑0 0 0 a a a
1μ S μ μ S x μ S x μ S μ  

 
Again, an estimate for aμ  is needed.  In order to obtain a maximum likelihood estimator 

for aμ , given any τ , we take the partial derivative of R with respect to aμ : 

 

 ( )1 1

1

T

t
t

R T
τ

τ− −

= +

∂
= − −

∂ ∑ a
a

S x S μ
μ

. (3.14)

Setting this equal to zero yields: 
 

( )1 1

1
0

T

t
t

T
τ

τ− −

= +

− − =∑ aS x S μ  

 

 ( ) ,
1

1ˆ
T

t T
tT τ
τ

τ
τ = +

= =
− ∑aμ x x . (3.15)

Thus T,τx  is the MLE for aμ  given τ .  Substituting T,τx  in for aμ  in R and simplifying: 
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 ( ) ( ) ( )1
, ,|

2 T T
TR τ τ

ττ −⎡ ⎤− ′= − −⎢ ⎥
⎣ ⎦

0 0X μ x S μ x . (3.16)

As with Equation (3.7), the MMRC charting statistic is found by maximizing R over all 

possible values of c: 

 ( ) ( ) ( )1
max , ,0

| max
2 T c T cc T

T cR R τ −

≤ <

⎡ ⎤− ′= = − −⎢ ⎥
⎣ ⎦

0 0X μ x S μ x  (3.17)

where τ̂  is the value of τ  maximizing ( )|R τ X  in Equation (3.16).  When implemented, 

the process is assumed in-control until Rmax exceeds a specified CL B (Rmax > B).  Section 

4.6 gives a regression based approach for estimating B for specific ARL0 values.  Once 

the chart signals, H0 is rejected in favor of Ha from the hypotheses in (3.12). 

After the chart signals, an estimate for τ  is computed using: 

 ( ) ( )1
, ,0

ˆ arg max
2 T c T cc T

T cτ −

≤ <

⎡ ⎤− ′= − −⎢ ⎥
⎣ ⎦

0 0μ x S μ x  (3.18)

 
Moreover, this τ̂  is the same τ̂  from Equation (3.17).  Substituting τ̂  for τ  in ( )ˆ τaμ , 

we obtain the MLE for ˆaμ  given τ̂ : 

 

 ( ) ˆ,
ˆ 1

1ˆ ˆ
ˆ

T

t T
tT τ
τ

τ
τ = +

= =
− ∑aμ x x  (3.19)

where both point estimates, τ̂  and ˆaμ , are maximum likelihood estimators for τ  and aμ . 

The MMRC implementation is basically identical to the UMRC.  Both charts 

calculate the maximum R value over all possible τ  change points.  After signaling, the τ  

maximizing Rmax becomes τ̂  and is an input to ˆaμ  to generate the MLE for ˆaμ  given τ̂ .  

This process is repeated after every chart signal.  The main difference between the 
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MMRC and the UMRC is the added complexity in calculating S-1 and the subsequent 

matrix multiplication in Equation (3.17). 

3.4 MMRC Example 

Figure 3.1 shows a graphical example of a ten variable MMRC chart with 50τ =  

and an observation matrix X pulled from a standard multivariate normal distribution.  The 

mean shift [.474,.474,...,.474]′=δ  corresponds with a vector norm distance of 1.5.  The 

top chart shows maxR  plotted over t taking ten observations to signal after 50τ = .  The 

blue line corresponds to the CL, B = 14.75, calibrated to ARL0 = 200.  For the bottom 

chart, instead of charting ten individual ˆaμ  vectors, the mean of each ˆaμ  vector is 

charted over time.  This works because the average of 0μ  and aμ  is known and equal to 

0 and .474 respectfully.  As you can see, ˆaμ  hovers around  after the second out-of-

control observation until the chart signals.  However, this chart is for demonstration 

purposes only because in practice 

δ

0μ  and aμ  are unknown.  Lastly, using the MLE for τ̂  

in Function (3.18), we find the estimate is coincidentally equal to the actual known value 

for τ . 
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Figure 3.1:  Single run MMRC chart with 50τ = ,  

 and mean shift 10p = [.474,.474,...,.474]′=δ  

 

3.5 Finding MMRC Control Limits 

While the MMRC eliminates the need to tune the control chart for a specific step 

change magnitude, one still needs a way to find CLs, B.  To develop a heuristic for 

estimating B, the fact a higher B value results in a higher ARL0 was utilized.  The 

pseudocode in Figure 3.2 shows how the process works.  The code starts with a target 

ARL0 value with an error of 1% on each side.  In the case of Figure 3.2 this equates to a 

desired error rage for ARL0 of 303 to 297.  Essentially, the heuristic uses a loop to 

generate candidate ARL0 values from the MMRC simulation.  A range is generated using 

each candidate ARL0 value plus/minus the standard error, and then this range matched up 

to the specified error range. 
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To match the desired and MMRC simulation error ranges, the heuristic uses four 

conditions labeled (1), (2), (3) and (4) in Figure 3.2.  The program starts with a run 

size, denoted by N, equal to ten, the CL B, denoted by B, equal to one and a B increment, 

denoted as B_shift, equal to one.  Condition (3) keeps incrementing B by B_shift 

until the simulation returns a candidate ARL0 within the desired upper and lower target 

range (Condition (1)) or the candidate ARL0 is within one standard error of the target 

(Condition (2)).  Typically Condition (2) is met first, and B_shift is then divided by 

three and N is multiplied by ten.  For reasons of computational speed, Condition (2) 

truncates the heuristic if the size of N is greater than 10,000.  If B is incremented greater 

than one standard error from the target, then Condition (4) decrements B by 

B_shift/3.  This asynchronous incrementing and decrementing of B guarantees the 

same B value is not used twice within each run of the heuristic.  The heuristic ends when 

either the desired range in (Condition (1)) is met or Condition (2) truncates because B 

is greater than 10,000. 
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target = 300;                   %target value 
upper = target + target * .01;  %upper error limit 
lower = target + target * .01;  %lower error limit 
B=1;                            %control limit 
B_shift = 1;                    %amount to change B by 
N = 10;                         %number of simulation runs 
  
while done == false 
    get ARL, se {standard error} from control chart; 
     
(1) if ARL plus/minus se within upper and lower error bounds then 
        %h found, so stop program 
        done = true; 
         
(2) else if range of ARL + se AND ARL - se contain target 
        %narrow focus 
        B_shift = B_shift/3; 
        %increase number of simulation runs 
        N = N * 10; 
         
        if (N > 10000) then 
            %10000 runs yields a small se, so stop for 
            %computational and time reasons 
            done = true; 
        end if 
(3) else if ARL + se <= target then 
            %increase h 
            B = B + B_shift; 
(4) else if ARL - se > target then 
            %decrease h by a smaller amount 
            B = B - B_shift/4; 
    end if 
end while 

Figure 3.2:  Find B Heuristic Psuedocode 

 
In practice, depending on the target ARL0 and p, the heuristic takes two to eight 

hours to run on a 2.8 GHz Pentium® 4 processor running Matlab® 7.  As one might 

expect, the higher ARL0 and p input into the heuristic, the longer it takes to converge. 

Figure 3.3 shows a single execution of the find B heuristic with p = 10 and a 

target ARL0 = 300. 
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Figure 3.3:  Find B Heuristic Execution for Target ARL = 300 

 
The top graph shows the change in B and the bottom graph shows the change in ARL and 

standard error from the MMRC simulation.  Red lines indicate the final values for B and 

ARL0.  While B does not seem to vary much once it reaches around 15, the ARL is highly 

sensitive (in terms of variability) to the value of B and the number of runs.  You can see 

on the bottom graph the effect of over-shooting ARL0 and then backtracking to the target 

value.  This particular example truncated with a range of 304.099-298.285 versus the 

desired 303-297 range.  Even though this is not the exact range desired, this heuristic 

produces highly accurate estimates and is more than adequate for the purpose of this 

thesis. 
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3.6 False Alarms 

For reasons of consistency and fair comparison, this thesis will follow the 

conventions of Pignatiello and Simpson [12] for the simulation modeling of false alarms.  

A false alarm occurs when 0τ >  and the chart signals at any time t, where t τ≤ .  If a 

false alarm occurs, then the control chart is zeroed out and the process is restarted at time 

t + 1.  However, the step change will still occur at time τ  with 1τ +  as the first out-of-

control value.  This models the real world where an investigative study finds a true false 

alarm.  In the real world, finding a false alarm indicates the process is truly in-control, the 

process is then restarted at time t + 1 without changing the process inputs.  Furthermore, 

this real world false alarm would not impact the actual but unknown change point. 

For example, let 50τ =  and the chart signals at 30t = .  This signal is considered 

a false alarm because t τ≤ .  The control chart is then zeroed out and restarted as if the 

next observation was the first.  However instead of 50 in-control observations, the control 

chart has only 20 observations until the step change occurs at 50τ = .  Thus on the 21st 

observation, a step change is first recorded on the restarted control chart. 

3.7 MC1 and MEWMA Charting Statistics 

Since Chapter 4 will compare the MMRC with the MC1 and MEWMA, it is 

necessary to show and discuss these control charting strategies prior to discussing results. 

3.7.1 MC1 
 

The MC1 was developed by Pignatiello and Runger [11].  It is based on the 

cumulative sum 
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t

i t n= − +

= −∑t iC X 0μ  (3.20)

 
where iX  is the observation vector at time i, 0μ  is the in-control mean vector, 

 

 1 11 if 1 0
1 if otherwise

t t
t

n MC
n − −+ >⎧
= ⎨
⎩

 (3.21)

and the charting statistic is 

 { }1 max ,0t t tMC kn′= −-1C S C t . (3.22)

 
Here S represents the covariance matrix and k is the tuning parameter used to dampen the 

Mahalanobis distance t
′ -1C S Ct  at time t.  If the MC1 exceeds the CL h, then the chart 

signals.  Furthermore, k corresponds to one-half of the Euclidean distance the QE wishes 

to detect.   

For example, take the two variable case with { }1 2,=X X X .  Suppose the 

expected shift in X  is { }1.5,.5− .  The resulting value of k is ( ) ( )2 21.5 .5 / 2⎛ ⎞− +⎜ ⎟
⎝ ⎠

 = 

.7906.  Like the univariate CUSUM, the MC1 renews itself (i.e. zeros out) periodically 

when the process is in-control.  This is controlled in the MC1 by the counter variable nt in 

(3.21), and nt = 0 upon startup.  For more information on the MC1 see Pignatiello and 

Runger [11]. 

3.7.2 MEWMA 
 

The MEWMA developed by Lowry et al. [8] is a natural extension of the EMWA.  

The MEWMA charting statistic is 
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  2 -1
tt tT ′= ZZ S Zt (3.23)

 
where  is the MEWMA statistic at the t2

tT th observation and -1
tZS  is the weighted 

covariance matrix defined by either (3.26) or (3.27).  When  exceeds the control limit 

h

2
tT

4, the chart signals.  Note the subscript of 4 in h4 has no other significance other than to 

differentiate h4 from other CLs using h, such as the MC1.  Equation (3.23) is a variation 

of Hotelling’s T2 statistic with the replacement of Z for X.  Zt is calculated as 

 1( )t t t−= + −Z RX I R Z . (3.24)
 
Here R is a diagonal matrix of weights greater than zero and less than one used to 

calibrate the chart and I is the identity matrix.  The value of Zt at startup is zero.  If 

 in R, then 1 2 ... pr r r r= = = = (3.24) is 

 1(1 )t tr r t−= + −Z X Z . (3.25)
 

The last calculation required is the weighted covariance matrix -1
tZS  of the 

standard covariance matrix S.  Assuming the weights are equal, this matrix is calculated 

one of two ways.  Lowry et al. [8] found an equation to find the exact or actual 

covariance matrix based on the tth observation: 

 ( )21 1

2
t

tr r

r

⎧ ⎫⎡ ⎤⎪ − − ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪⎩ − ⎭

ZS S . (3.26)

 
The other method is to assume the chart is fully warmed up and in a steady-state.  This 

steady state covariance matrix is 

 
2t

r
r

⎧ ⎫= ⎨ ⎬−⎩ ⎭
ZS S . (3.27)
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Note, in either assumption when r = 1, we are left with Hotelling’s T2 chart, which is a 

special case of the MEWMA.  Figure 3.4 illustrates the convergence of the actual weight 

to the steady state weight.  As the graph shows, the two converge on 22nd observation. 
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Figure 3.4:  Actual vs. Steady State Covariance Matrix Weights 

 
For more information on the MEWMA, consult the paper by Lowry et al. [8]. 

3.8 Relative Mean Index 

When conducting an ARL comparison of control charts, some charts have 

different detection capabilities at different mean shift magnitudes, denoted by δ .  For 

example, consider two control charts, say, Chart 1 and Chart 2.  Chart 1 shows superior 

performance when 2δ ≤ , but poor performance when δ  > 2.  Chart 2 performs in an 

opposite fashion with poor performance when 2δ ≤ , but superior performance when δ  

> 2.  The question becomes:  “Which chart is better?”  To answer this question, the RMI 

developed by Han and Tsung [4] is used.  The RMI is a simple weighted average of the 

compared charts for a desired range of δ . 

The calculation of the RMI score is: 

 ( )
( ) *

*
1

1 , 0ii

i

n

i
i

ARL c ARL
RMI c

n ARL
δδ

δ

δ
=

⎡ ⎤−
⎢ ⎥=
⎢ ⎥⎣ ⎦

∑ ∀ >  (3.28)
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where c is the desired chart, iδ  is the ith  mean shift magnitude, ( )

i
ARL c

δ
 is the ARL at 

chart c and iδ  and *
i

ARLδ  is the smallest ARL over all charts at iδ .  This gives a single 

value of the chart’s overall detection performance, and the lower the RMI score, the 

better the performance.  An RMI of zero indicates the chart has the quickest out-of-

control detection of the entire range of tested mean shifts.  Note, if an inappropriate range 

of δ  were chosen, say [ ]0.1,0.2,0.3,0.4,0.5,1.0, 2.0 , then this range of δ  would skew the 

RMI toward charts with superior detection performance for small δ .  Overall, when a 

realistic δ  range is chosen, the RMI is an excellent tool when conducting an ARL 

performance comparison of control charts. 

3.9 Conclusion 

The MMRC is a much needed addition to the field of SPC.  By deriving and then 

extending the UMRC into the multivariate realm, a magnitude robust control chart for 

multivariate mean shift detection was developed.  Magnitude robust means the QE no 

longer has to calibrate the chart to a specific mean shift magnitude.  This was 

accomplished using a log-likelihood-ratio and MLE to test for an out-of-control process.  

Another significant advantage of this method is the MMRC outputs an MLE for the 

actual change point τ , denoted by τ̂ .  Use of τ̂  can significantly reduce a QE’s search 

for causality when the chart signals.  This results in less down time and allows for greater 

productivity for the process.  Furthermore, the MMRC is identical to the UMRC when p 

= 1, and therefore can supplant the UMRC. 
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In addition, a simulation-based search heuristic was presented to find the control 

limit B for the MMRC.  This heuristic allows a QE to quickly (within a few hours) obtain 

an estimate for B.  Next, the handling of false alarms within a simulation was discussed.  

Essentially, once a false alarm is detected the control chart resets itself, but the change 

point is not altered.  This models the real world where a false alarm is independent of the 

actual change point. 

Finally, this chapter presented the competing charts (MC1 and MEWMA) and the 

RMI, a method to compare ARL performance of these charts with the MMRC.  The MC1 

and MEWMA represent the current state of the art in multivariate control charts.  As a 

result, a successful ARL performance comparison of the MMRC with the MC1 and 

MEWMA is critical to its acceptance in the real world.  For these comparisons, the RMI 

was used to measure control chart performance. 

46 



IV.  Results 

4.1 Introduction 

In Chapter III, a control chart using a change point model and likelihood-ratios 

was derived.  In this chapter, the results of this chart, the MMRC, are compared to the 

MC1 and MEWMA.  Note Hotelling’s T2 is not directly considered because it is a special 

case of the MEWMA.  This comparison was accomplished through ARL evaluations 

over several tuning parameters and two change points. 

To evaluate the ARL performance of the MMRC, MC1 and MEWMA, a Monte 

Carlo simulation is used.  This simulation will allow the QE to specify the actual change 

point, control limit, in-control mean vector, out-of-control mean vector, covariance 

matrix, tuning parameter (MC1 and MEWMA) and the run size or number of simulated 

runs to collect.  All of these inputs give the QE great flexibility to evaluate the MMRC, 

MC1, and MEWMA.  For outputs, the simulation gives the overall average ARL and 

standard error, and for the MMRC, it gives the average estimate for the change point. 

Although there is an infinite combination of input parameters for the simulation, 

this research will focus only on a select few to answer three questions.  These three 

questions all refer to the comparison of the ARL performance among the MMRC, MC1, 

and MEWMA.  First off, “What effect does the change point position have?”  To answer 

this question, the results will be split between those where the process is simulated as out-

of-control from the beginning and simulated as in-control for 50 observations and then 

suddenly shifting out-of-control.  Within these results the second and third questions are 

asked:  “What effect does the number of out-of-control variables in the out-of-control 
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vector have?” and “What effect does the number of variables in the process have?”  With 

regard to the number of out-of-control variables question, two situations will be 

considered:  one where the one variable in the out-of-control mean vector shifts and 

another where all variables in the out-of-control mean shift.  Finally, three different 

variable sizes will answer the last question. 

In addition to the ARL performance comparison, a regression will be used to 

estimate values of B in the MMRC.  These values will allow for an ARL0 ranging from 

50 to 300 with up to 10 variables. 

Next, the robustness of the MMRC change point estimator is evaluated.  These 

estimators will be pulled from each of the ARL performance simulations and compared 

to the known simulated change point. 

Finally, preliminary results from this research effort have shown the MEWMA 

has different in-control ARL values when the process is out-of-control from the 

beginning versus when the process is initially in-control and then suddenly shifts out-of-

control some time later.  Since this phenomenon could adversely effect the ARL 

performance evaluation, this chapter will research it in depth. 

4.2 ARL Performance Simulation Implementation 

Although control charts are programmable on many different languages and 

statistical packages, Matlab® 7 was selected for its rapid coding capabilities and wide 

variety of built-in statistical functions.  However, in this section, pseudocode is used 

instead of Matlab® code in order to ease understanding.  The great advantage to 

programming the simulation model used for evaluating ARL performance of control 
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charts is the actual code is very similar from chart to chart.  The only real difference is 

calculating the charting statistic.  As a result, the same code is slightly modified to 

calculate ARL performance results for the MMRC, MC1 and MEWMA.  Moreover, 

since the simulation code is quite long, we will break it up into three parts: simulation 

inputs, main simulation loop, and the single run simulation of the chart itself. 

4.2.1 Simulation Inputs 
 

Figure 4.1 shows the standard simulation inputs for a multivariate control chart.  

The main difference between the charts is Hotelling’s T2 and MMRC do not need the 

tuning parameter k.  Variables tau and delta are the induced and therefore they are the 

known change point and step change from mu0.  If you are using standardized data, mu0 

is column vector of zeros from where the number of variables, p, is equal to mu0’s row 

dimension. 

% B = upper control limit 
% tau = change point 
% N = number of times to run the simulation 
% mu0 = in-control average vector 
% delta = step change vector 
% sigma = covariance matrix 
% k = tuning parameter (for non-MMRC charts) 

Figure 4.1:  Simulation Inputs 

4.2.2 Main Simulation Loop 
 

The loop in Figure 4.2 is responsible for running the simulation N times where N 

is the run size of the simulation.  As one can see, there are four internal variables here and 

three output variables.  At the start of each run the chart has not signaled, thus 

chart_signals is false before going into the single run simulation.  The other two input 
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variables are used to handle false alarms.  The variable t_const advances monitors the 

time when the actual shift occurs while t is reset to zero when false alarms occur.  All 

three of these are fed into the single run simulation, which outputs the sum of ARL, the 

sum of ARL2, and the estimate for the change point, tau_hat.  These values are used to 

calculate the average ARL, standard error, and tau_hat.  Note tau_hat is only used with 

the MMRC and not the MC1 or MEWMA. 

for i = 1 to N    %outer simulation loop 
    chart_signals = false; %boolean test for loop termination 
    t = 0;             %counter reset after false alarms  
    t_const = 0;       %counter not reset after false alarms 
     
    get sum of ARL, squared ARL and tau_hat from the single run _ 
        simulation; 
end 
  
calculate and output average ARL 
calculate and output standard error 
calculate and output average tau_hat 

Figure 4.2:  Main Simulation Loop 

4.2.3 Single Run Simulation 
 

The third component of the simulation is the single run simulation.  This section 

in Figure 4.3 uses a while loop to run until a non-false alarm is detected.  To start, both t 

and t_const are incremented to the first observations.  The if … then structure 

determines whether the p by t matrix X receives an in or out-of-control random vector of 

observations.  This set of observations is sent to a control chart function, such as maxR  in 

(3.17), which outputs the charting statistic, chart_stat, and for the MMRC, the potential 

change point estimate, cp.  The next couple of if statements determine the false alarm 

status when the chart signals.  If a false alarm occurs, then X and t are reset to zero and 

the entire chart is restarted.  Otherwise the chart truly signals, chart_signals is set to 
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true and cp becomes the actual change point estimate, tau_hat.  See Section 3.6 for more 

information on false alarms.  At the bottom, we tally the ARL and ARL2 used in Figure 

4.2.  This information is then sent back to the main simulation loop in Section 4.2.2. 

while chart_signals == false 
        t = t + 1; t_const = t_const + 1; 
         
        if t_const <= tau then  %if process in-control 
            X(row of obs.,col t) = multivariate normal with mu0; 
        else                    %if process out-of-control 
            X(row of obs.,col t) = multivariate normal with mu0 _ 
          + delta; 
        end 
         
        get chart_stat, cp from the appropriate function; 
         
        if (chart_stat > B) and (t_const <= tau) %false alarm occured 
            zero out X; 
            t = 0; 
        end 
         
        if (t_stat > B) and (t_const > tau) %chart signals 
            chart_signals = true; 
            tau_hat = cp; 
        end 
    end 
     
    sum the ARL; 
    sum the ARL^2; 
     
end 

Figure 4.3:  Single Run Simulation 

 

4.3 ARL Performance (τ = 0) 

In their papers, both Pignatiello and Runger [11] and Lowry and Montgomery [7] 

provide CL values for the MC1 and MEWMA respectively.  These values are 

recomputed using the method in section 3.5 as both an error check and to compensate for 

different pseudorandom number generators.  The proceeding ARL performance 

evaluation will use these recomputed CL values. 
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Assuming the process was out-of-control from the beginning, an evaluation of the 

ARL performance was conducted using Monte Carlo simulation to compare the ARL 

performances of the MMRC with those of the MC1 and MEWMA.  The run size for each 

ARL simulation was 10,000.  Additionally, the covariance matrix was assumed 

equivalent to the identity matrix (i.e. process variables assumed to be uncorrelated). 

This study will start with an RMI summary across all tuning parameter settings 

contained in Tables 4.2 through 4.7.  After this RMI comparison, the simulated ARL 

values are presented with their corresponding standard errors.  The ARL performance is 

evaluated when p = {2,3,10}.  Furthermore, two different types of mean shifts are 

considered:  one where a single variable in the process suddenly shifts 

[ ]( ,0,0,...,0a δ=μ )  and another where all variables in the process suddenly shift 

simultaneously with identical magnitude [ ]( ), , ,...,a δ δ δ δ=μ . 

4.3.1 RMI Comparison 
 

Table 4.1 gives a summary of the RMI scores contained in Tables B.1 through 

B.6 from Appendix B.  The RMI compares the ARL performance of the MMRC, MC1, 

and MEWMA (both using the actual covariance matrix and the steady state covariance 

matrix) across the range of tested change magnitudes.  These change magnitudes are the 

same as those in the De columns from TablesB.1 through B.6 (see Section 4.3.2 for an 

explanation).  The top row of Table 4.1 gives the chart type, the tuning parameter (if 

needed), the RMI values when p = {2,3,10} for [ ],0,0,...,0a δ=μ  and the RMI values 

when p = {2,3,10} for [ ], , ,...,a δ δ δ δ=μ .   
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Here lower RMI values equate to better ARL performance and higher RMI values 

equate to lesser ARL performance over the range of tested change magnitudes.  An RMI 

of zero indicates this chart and tuning parameter was superior over all change points for a 

given number of variables p and the particular aμ  shift. 

Table 4.1:  RMI Summary for 0τ =  from Tables B.1 through B.6

Type Tuning Parameter p  = 2 p  = 3 p  = 10 p  = 2 p  = 3 p  = 10
MMRC -- 0.40 0.40 0.43 0.41 0.41 0.43

k = 0.25 0.97 1.06 1.42 0.98 1.06 1.43
k = 0.50 0.61 0.64 0.77 0.61 0.64 0.76
k = 1.00 0.49 0.51 0.55 0.50 0.51 0.55
r = 0.05 0.00 0.00 0.01 0.00 0.00 0.01
r = 0.1 0.09 0.09 0.12 0.09 0.09 0.12
r = 0.15 0.15 0.15 0.19 0.15 0.16 0.19
r = 0.5 0.54 0.59 0.80 0.55 0.58 0.81
r = 0.8 1.10 1.22 1.76 1.12 1.22 1.74
r = 0.05 1.14 1.23 1.41 1.14 1.23 1.40
r = 0.1 0.84 0.87 0.97 0.85 0.87 0.97
r = 0.15 0.72 0.75 0.80 0.73 0.75 0.80
r = 0.5 0.64 0.71 0.96 0.65 0.70 0.95
r = 0.8 1.11 1.26 1.83 1.10 1.26 1.81

MEWMA 
Steady-
State 

Covariance 
Matrix

μa = (δ,δ,δ,…,δ)μa = (δ,0,0,…,0)

MC1

MEWMA 
Actual 

Covariance 
Matrix

Clearly, the MEWMA using the actual covariance matrix and a tuning parameter 

of r = 0.05 is superior to all other charts due to its near zero RMI score.  Moreover, all 

RMI scores under the MEWMA steady-state covariance matrix calculation are inferior to 

the MEWMA actual covariance matrix, MC1, and MMRC RMI scores.  Likewise, the 

values of r at 0.5 and 0.8 also have relatively poor performance to the MC1 and MMRC.  

As a result, Section 4.3.2 will eliminate these data points in the interest of brevity and 

defer the complete tables to Appendix B.  However, the RMI values are not recomputed 

for these abbreviated tables to maintain consistency with the Appendix B tables. 

4.3.2 Table Comparison 
 

In this section, Tables 4.2 through 4.4 assume [ ],0,0,...,0a δ=μ , and Tables 4.5 

through 4.7 assume [ ], , ,...,a δ δ δ δ=μ .  Although there exists an infinite number of ways 
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to define aμ , using extremes makes interpolation easier and gives a good look at each 

chart’s performance. 

The tables are arranged with the estimated ARL on top and the corresponding 

standard error in parentheses along the bottom.  The header row is organized left to right 

with  as the Euclidean distance from the centroid (EquationeD (1.1)), δ  as the individual 

mean shift contained within aμ , the MMRC column, the MC1 CUSUM columns with 

tuning parameter settings { }0.25,0.50,1.00k =  and the MEWMA using the actual 

covariance matrix (Equation (3.26)) with tuning parameter settings { }0.05,0.10,0.15r = .  

The second to the bottom row contains the CL used, and the bottom row presents the 

RMI values. 
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Table 4.2:  τ = 0, p = 2, μa = (δ,0) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.38 199.38 201.14 199.13 200.74 201.92 199.15

(1.92) (1.88) (2.05) (2.02) (2.21) (2.08) (1.96)
0.25 0.25 87.20 66.86 93.06 128.14 58.93 73.78 85.22

(0.69) (0.54) (0.87) (1.28) (0.56) (0.71) (0.82)
0.50 0.50 34.15 25.38 31.23 56.27 20.99 25.17 29.10

(0.22) (0.15) (0.26) (0.55) (0.17) (0.20) (0.25)
0.75 0.75 17.89 14.79 15.08 24.96 10.78 12.66 13.96

(0.11) (0.07) (0.10) (0.23) (0.08) (0.09) (0.11)
1.00 1.00 11.09 10.31 9.26 12.90 6.82 7.79 8.53

(0.06) (0.04) (0.05) (0.11) (0.05) (0.05) (0.06)
1.25 1.25 7.63 7.98 6.74 7.79 4.77 5.41 5.71

(0.04) (0.03) (0.03) (0.06) (0.03) (0.03) (0.04)
1.50 1.50 5.67 6.51 5.20 5.31 3.63 4.04 4.30

(0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.03)
1.75 1.75 4.44 5.49 4.34 3.97 2.90 3.21 3.35

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2.00 2.00 3.62 4.78 3.69 3.21 2.36 2.62 2.73

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
2.25 2.25 3.00 4.27 3.25 2.72 2.00 2.19 2.28

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.50 2.50 2.55 3.84 2.90 2.32 1.75 1.88 1.98

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.75 2.75 2.21 3.52 2.64 2.08 1.55 1.67 1.73
3.00 3.00 1.96 3.25 2.42 1.87 1.40 1.49 1.55
3.25 3.25 1.74 3.02 2.26 1.69 1.29 1.37 1.40
3.50 3.50 1.58 2.82 2.12 1.56 1.20 1.26 1.30
3.75 3.75 1.45 2.64 2.01 1.44 1.13 1.18 1.21
4.00 4.00 1.32 2.48 1.93 1.34 1.09 1.12 1.14
4.25 4.25 1.24 2.34 1.83 1.25 1.05 1.08 1.09
4.50 4.50 1.17 2.22 1.76 1.18 1.03 1.05 1.06
4.75 4.75 1.11 2.13 1.68 1.12 1.02 1.02 1.03
5.00 5.00 1.07 2.06 1.58 1.08 1.01 1.02 1.02

B = 6.66 h = 7.52 h = 4.78 h = 2.69 h4 = 7.71 h4 = 8.79 h4 = 9.36
RMI: 0.40 0.97 0.61 0.49 0.00 0.09 0.15

MEWMA Actual Covariance MatrixMC1 CUSUM

 
 

In Table 4.2, the MEWMA with r = .05 is superior to both the MMRC and MC1 

for every magnitude of change tested.  The distinction between the MMRC and MC1 is 

less clear.  As typical with most CUSUM based charts, the MC1 has difficulty detecting 

large shifts unless it is tuned with a large k value, which, in turn, increase the number of 

observations to detect small shifts.  As expected, an exactly tuned MC1 at 

{ }0.25,0.50,1.00k =  corresponding to { }0.50,1.00, 2.00δ =  readily outperforms the 

MMRC.  However, considering the entire range of possible shifts, the MMRC is superior 

to the MC1 over all three tuning parameters with an RMI = 0.40. 
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Table 4.3:  τ = 0, p = 3, μa = (δ,0,0) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 201.01 200.34 201.59 199.93 202.34 202.68 199.02

(1.96) (1.89) (1.99) (1.98) (2.17) (2.04) (2.00)
0.25 0.25 95.05 71.77 99.77 139.77 67.33 84.09 94.74

(0.74) (0.59) (0.96) (1.37) (0.63) (0.81) (0.92)
0.50 0.50 37.43 27.86 34.41 63.91 23.53 28.77 34.02

(0.24) (0.17) (0.29) (0.61) (0.19) (0.24) (0.29)
0.75 0.75 19.72 16.16 16.46 28.46 12.38 14.43 16.00

(0.12) (0.07) (0.11) (0.26) (0.09) (0.10) (0.12)
1.00 1.00 12.24 11.39 10.16 14.29 7.67 8.75 9.57

(0.07) (0.04) (0.05) (0.12) (0.05) (0.06) (0.06)
1.25 1.25 8.46 8.82 7.30 8.47 5.38 6.04 6.48

(0.04) (0.03) (0.03) (0.06) (0.03) (0.04) (0.04)
1.50 1.50 6.27 7.27 5.77 5.80 3.99 4.46 4.76

(0.03) (0.02) (0.02) (0.04) (0.02) (0.03) (0.03)
1.75 1.75 4.88 6.15 4.73 4.30 3.18 3.56 3.70

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2.00 2.00 3.93 5.39 4.05 3.48 2.59 2.86 3.02

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02)
2.25 2.25 3.29 4.81 3.57 2.91 2.19 2.41 2.52

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.50 2.50 2.78 4.32 3.20 2.54 1.93 2.07 2.16

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.75 2.75 2.42 3.94 2.89 2.24 1.67 1.82 1.89
3.00 3.00 2.12 3.64 2.65 2.03 1.50 1.62 1.68
3.25 3.25 1.88 3.38 2.46 1.86 1.37 1.47 1.52
3.50 3.50 1.71 3.17 2.30 1.71 1.27 1.34 1.38
3.75 3.75 1.55 2.99 2.18 1.59 1.19 1.24 1.27
4.00 4.00 1.43 2.83 2.08 1.48 1.13 1.17 1.20
4.25 4.25 1.32 2.68 2.00 1.37 1.08 1.12 1.14
4.50 4.50 1.23 2.53 1.94 1.29 1.05 1.07 1.09
4.75 4.75 1.16 2.38 1.88 1.21 1.03 1.04 1.06
5.00 5.00 1.11 2.26 1.82 1.14 1.02 1.03 1.03

B = 7.94 h = 8.79 h = 5.55 h = 3.15 h4 = 9.82 h4 = 10.99 h4 = 11.57
RMI: 0.40 1.06 0.64 0.51 0.00 0.09 0.15

MC1 CUSUM MEWMA Actual Covariance Matrix

 
As p increases, the number of samples required to detect a one variable shift 

increases, especially under a smaller magnitude shift.  Otherwise, the same conclusion for 

Table 4.2 holds for Table 4.3. 
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Table 4.4:  τ = 0, p = 10, μa = (δ,0,0,…,0) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.13 200.58 201.14 198.96 205.21 204.17 198.00

(1.92) (2.06) (2.05) (1.94) (2.16) (2.08) (2.02)
0.25 0.25 118.79 84.20 122.42 158.52 93.34 118.13 128.21

(0.94) (0.78) (1.19) (1.62) (0.92) (1.18) (1.28)
0.50 0.50 51.71 33.47 44.65 88.47 34.85 44.94 54.58

(0.33) (0.17) (0.41) (0.89) (0.28) (0.39) (0.50)
0.75 0.75 27.66 21.56 19.69 40.30 17.78 21.62 25.60

(0.15) (0.08) (0.13) (0.39) (0.13) (0.16) (0.21)
1.00 1.00 17.16 16.09 12.64 19.32 11.02 12.74 14.38

(0.09) (0.05) (0.06) (0.17) (0.07) (0.08) (0.10)
1.25 1.25 11.85 12.86 9.50 10.67 7.73 8.69 9.41

(0.06) (0.03) (0.03) (0.08) (0.05) (0.05) (0.06)
1.50 1.50 8.68 10.74 7.74 7.00 5.70 6.39 6.84

(0.04) (0.02) (0.02) (0.04) (0.03) (0.04) (0.04)
1.75 1.75 6.74 9.32 6.53 5.30 4.43 4.96 5.20

(0.03) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03)
2.00 2.00 5.40 8.19 5.69 4.37 3.60 3.94 4.17

(0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02)
2.25 2.25 4.46 7.31 5.07 3.69 3.00 3.28 3.44

(0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
2.50 2.50 3.77 6.66 4.54 3.29 2.58 2.81 2.90

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.75 2.75 3.23 6.10 4.17 2.95 2.23 2.41 2.54
3.00 3.00 2.83 5.61 3.83 2.69 1.99 2.14 2.22
3.25 3.25 2.50 5.22 3.57 2.47 1.78 1.89 1.98
3.50 3.50 2.22 4.87 3.35 2.30 1.61 1.71 1.79
3.75 3.75 2.01 4.58 3.15 2.18 1.47 1.57 1.62
4.00 4.00 1.82 4.33 2.99 2.08 1.35 1.45 1.48
4.25 4.25 1.67 4.11 2.84 2.00 1.27 1.34 1.38
4.50 4.50 1.55 3.92 2.70 1.92 1.21 1.26 1.29
4.75 4.75 1.44 3.74 2.56 1.85 1.14 1.19 1.21
5.00 5.00 1.34 3.56 2.42 1.78 1.09 1.14 1.15

B = 14.75 h = 15.33 h = 9.58 h = 5.53 h4 = 21.41 h4 = 22.98 h4 = 23.7
RMI: 0.43 1.42 0.77 0.55 0.01 0.12 0.19

MEWMA Actual Covariance MatrixMC1 CUSUM

 
 

Again, as p increases to ten, the number of samples required to detect a one 

variable shift increases.  However, this sample increase appears nonlinear and decreases 

as p increases for all charts and tuning parameters. For example the MMRC at .25δ =  

goes from 87.2 (p = 2) to 95.05 (p = 3) and then to 118.79 (p = 10).  This is a positive 

result if one has many variables within their process. 
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Table 4.5:  τ = 0, p = 2, μa = (δ,δ) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.38 199.38 201.14 199.13 202.45 196.10 200.42

(1.92) (1.88) (2.05) (2.02) (2.17) (2.01) (2.02)
0.25 0.18 87.99 67.42 92.54 129.03 58.86 73.48 84.35

(0.68) (0.55) (0.87) (1.28) (0.56) (0.70) (0.83)
0.50 0.35 33.85 25.44 31.00 56.59 20.44 25.00 28.91

(0.22) (0.15) (0.25) (0.55) (0.16) (0.21) (0.25)
0.75 0.53 17.65 14.74 15.11 25.11 10.90 12.78 13.85

(0.11) (0.07) (0.10) (0.23) (0.08) (0.09) (0.10)
1.00 0.71 11.18 10.31 9.23 12.89 6.84 7.78 8.46

(0.06) (0.04) (0.05) (0.11) (0.05) (0.05) (0.06)
1.25 0.88 7.64 7.97 6.76 7.75 4.83 5.41 5.77

(0.04) (0.03) (0.03) (0.06) (0.03) (0.03) (0.04)
1.50 1.06 5.68 6.51 5.23 5.32 3.63 4.00 4.28

(0.03) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)
1.75 1.24 4.41 5.50 4.35 3.98 2.87 3.18 3.36

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2.00 1.41 3.59 4.80 3.73 3.20 2.34 2.62 2.74

(0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.01)
2.25 1.59 2.99 4.27 3.25 2.72 1.98 2.21 2.28

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.50 1.77 2.56 3.84 2.90 2.33 1.74 1.89 1.97

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.75 1.94 2.21 3.52 2.64 2.08 1.54 1.67 1.72
3.00 2.12 1.95 3.25 2.43 1.88 1.40 1.48 1.55
3.25 2.30 1.75 3.02 2.26 1.70 1.27 1.36 1.41
3.50 2.47 1.57 2.82 2.13 1.56 1.20 1.27 1.30
3.75 2.65 1.45 2.64 2.02 1.44 1.13 1.18 1.21
4.00 2.83 1.33 2.49 1.92 1.34 1.09 1.12 1.14
4.25 3.01 1.24 2.33 1.84 1.25 1.05 1.08 1.09
4.50 3.18 1.17 2.22 1.76 1.18 1.03 1.05 1.06
4.75 3.36 1.11 2.13 1.67 1.12 1.02 1.03 1.03
5.00 3.54 1.08 2.07 1.57 1.08 1.01 1.02 1.02

B = 6.66 h = 7.52 h = 4.78 h = 2.69 h4 = 7.71 h4 = 8.79 h4 = 9.36
RMI: 0.41 0.98 0.61 0.50 0.00 0.09 0.15

MEWMA Actual Covariance MatrixMC1 CUSUM

 
 

Here in Table 4.5, all process variable means have shifted instead of simply one.  

In order to maintain the same Euclidean distance from the centroid, each δ  is calculated 

as follows: 

2
eD pδ=

2
eD

p
δ⇒ =  

where δ  is the mean shift contained in aμ .  For example, with p = 2 at a distance De = .5 

results in a total shift of 
20.5 .35

2
δ = = .  Interestingly, this does not seem to have an 

impact on the ARL detection capabilities when compared to the single shift aμ  because 
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the Euclidean distances are the same.  In fact, this table is almost indistinguishable from 

Table 4.2. 

Table 4.6:  τ = 0, p = 3, μa = (δ,δ,δ) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 201.01 200.34 201.59 199.93 203.24 201.85 203.96

(1.96) (1.89) (1.99) (1.98) (2.18) (2.09) (2.10)
0.25 0.14 96.21 73.63 99.94 141.63 66.91 82.28 97.73

(0.75) (0.61) (0.95) (1.42) (0.62) (0.78) (0.97)
0.50 0.29 37.94 27.88 34.60 63.66 23.47 28.97 34.30

(0.25) (0.17) (0.29) (0.61) (0.19) (0.24) (0.30)
0.75 0.43 19.76 16.20 16.42 28.15 12.37 14.30 16.37

(0.12) (0.07) (0.11) (0.26) (0.09) (0.10) (0.12)
1.00 0.58 12.26 11.45 10.14 14.42 7.70 8.70 9.59

(0.07) (0.04) (0.05) (0.12) (0.05) (0.06) (0.06)
1.25 0.72 8.45 8.84 7.33 8.55 5.40 6.01 6.41

(0.04) (0.03) (0.03) (0.06) (0.03) (0.04) (0.04)
1.50 0.87 6.27 7.27 5.75 5.72 4.02 4.47 4.77

(0.03) (0.02) (0.02) (0.04) (0.02) (0.03) (0.03)
1.75 1.01 4.91 6.16 4.72 4.33 3.18 3.56 3.69

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2.00 1.15 3.92 5.36 4.06 3.47 2.59 2.91 3.00

(0.02) (0.01) (0.01) (0.02) (0.01) (0.02) (0.02)
2.25 1.30 3.32 4.79 3.57 2.92 2.21 2.41 2.51

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.50 1.44 2.78 4.32 3.20 2.53 1.90 2.06 2.16

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.75 1.59 2.43 3.95 2.90 2.24 1.69 1.83 1.87
3.00 1.73 2.12 3.63 2.66 2.02 1.49 1.62 1.68
3.25 1.88 1.89 3.38 2.46 1.85 1.37 1.47 1.52
3.50 2.02 1.69 3.17 2.31 1.71 1.27 1.33 1.38
3.75 2.17 1.55 2.99 2.18 1.58 1.19 1.25 1.28
4.00 2.31 1.42 2.83 2.08 1.47 1.13 1.18 1.20
4.25 2.45 1.32 2.68 2.00 1.37 1.08 1.11 1.14
4.50 2.60 1.23 2.53 1.95 1.29 1.05 1.08 1.08
4.75 2.74 1.16 2.38 1.88 1.21 1.03 1.05 1.06
5.00 2.89 1.11 2.27 1.82 1.14 1.02 1.03 1.03

B = 7.94 h = 8.79 h = 5.55 h = 3.15 h4 = 9.82 h4 = 10.99 h4 = 11.57
RMI: 0.41 1.06 0.64 0.51 0.00 0.09 0.16

MEWMA Actual Covariance MatrixMC1 CUSUM

 
 

Likewise, Table 4.6 and Table 4.7 require more samples to detect when additional 

variables are added, and have a similar performance to Table 4.3 and Table 4.4. 
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Table 4.7:  τ = 0, p = 10, μa = (δ,δ,δ,…,δ) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.13 200.58 201.14 198.96 203.74 202.87 200.72

(1.92) (2.06) (2.05) (1.94) (2.19) (2.07) (2.03)
0.25 0.08 119.83 85.63 120.92 160.33 92.45 116.94 129.88

(0.94) (0.81) (1.20) (1.61) (0.91) (1.17) (1.29)
0.50 0.16 51.82 33.65 44.42 88.95 34.44 44.51 55.56

(0.33) (0.17) (0.41) (0.89) (0.28) (0.38) (0.50)
0.75 0.24 27.54 21.60 19.81 41.49 18.01 21.59 25.91

(0.16) (0.08) (0.13) (0.41) (0.13) (0.16) (0.21)
1.00 0.32 17.25 16.05 12.67 19.19 11.11 12.89 14.37

(0.09) (0.05) (0.06) (0.18) (0.07) (0.08) (0.10)
1.25 0.40 11.92 12.93 9.51 10.55 7.71 8.70 9.45

(0.06) (0.03) (0.03) (0.08) (0.05) (0.05) (0.06)
1.50 0.47 8.73 10.79 7.72 7.06 5.66 6.38 6.72

(0.04) (0.02) (0.02) (0.04) (0.03) (0.04) (0.04)
1.75 0.55 6.73 9.28 6.56 5.35 4.41 4.96 5.17

(0.03) (0.02) (0.02) (0.03) (0.02) (0.03) (0.03)
2.00 0.63 5.38 8.18 5.68 4.38 3.59 4.02 4.19

(0.02) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02)
2.25 0.71 4.44 7.34 5.05 3.73 3.00 3.30 3.46

(0.02) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02)
2.50 0.79 3.75 6.66 4.56 3.29 2.58 2.81 2.91

(0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
2.75 0.87 3.24 6.08 4.15 2.93 2.24 2.44 2.52
3.00 0.95 2.83 5.61 3.84 2.67 1.97 2.15 2.23
3.25 1.03 2.48 5.23 3.56 2.47 1.77 1.90 1.96
3.50 1.11 2.23 4.88 3.33 2.31 1.60 1.72 1.79
3.75 1.19 2.01 4.59 3.16 2.18 1.47 1.58 1.62
4.00 1.26 1.83 4.33 2.99 2.08 1.36 1.44 1.48
4.25 1.34 1.68 4.11 2.84 1.99 1.27 1.34 1.38
4.50 1.42 1.54 3.92 2.69 1.91 1.21 1.26 1.27
4.75 1.50 1.44 3.75 2.56 1.85 1.14 1.18 1.21
5.00 1.58 1.34 3.55 2.41 1.78 1.09 1.13 1.16

B = 14.75 h = 15.33 h = 9.58 h = 5.53 h4 = 21.41 h4 = 22.98 h4 = 23.7
RMI: 0.43 1.43 0.76 0.55 0.01 0.12 0.19

MC1 CUSUM MEWMA Actual Covariance Matrix

 
 

4.4 ARL Performance (τ = 50) 

At 50τ = , the MEWMA is no longer the superior chart and is outperformed by 

the MMRC.  Furthermore, the same underlying assumptions from Section 4.3 hold in this 

section with the exception of 50τ =  instead of 0τ = . 

4.4.1 RMI Summary 
 

Table 4.8 is another RMI summary similar to Table 4.1 from Section 4.3.1 except 

50τ =  and the scores are from Tables B.7 through B.12.  Moreover, the same 

assumptions from Section 4.3.1 apply here as well. 
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Table 4.8:  RMI Summary for 50τ =  from Tables B.7 through B.12

Type Tuning Parameter p  = 2 p  = 3 p  = 10 p  = 2 p  = 3 p  = 10
MMRC -- 0.07 0.08 0.09 0.07 0.07 0.09

k = 0.25 0.76 0.92 1.43 0.76 0.91 1.43
k = 0.50 0.42 0.51 0.91 0.42 0.51 0.91
k = 1.00 0.30 0.37 0.61 0.30 0.37 0.61
r = 0.05 0.55 0.53 0.39 0.56 0.52 0.39
r = 0.1 0.39 0.39 0.28 0.39 0.38 0.28
r = 0.15 0.31 0.31 0.27 0.30 0.31 0.26
r = 0.5 0.31 0.35 0.54 0.31 0.35 0.54
r = 0.8 0.66 0.75 1.28 0.66 0.75 1.28
r = 0.05 0.65 0.65 0.58 0.65 0.65 0.58
r = 0.1 0.42 0.42 0.38 0.42 0.42 0.38
r = 0.15 0.33 0.33 0.30 0.33 0.33 0.30
r = 0.5 0.29 0.35 0.55 0.29 0.35 0.55
r = 0.8 0.65 0.79 1.30 0.65 0.78 1.29

MEWMA 
Steady-
State 

Covarianc
e Matrix

μa = (δ,0,0,…,0) μa = (δ,δ,δ,…,δ)

MC1

MEWMA 
Actual 

Covarianc
e Matrix

Looking at the MEWMA actual covariance matrix with r = 0.05, we see this chart 

and tuning parameter is no longer superior in terms of the RMI score.  In fact, among all 

of the MEWMA and MC1 tuning parameters, the MEWMA with r = 0.15 under the 

actual covariance matrix has a lower RMI score for p = {3,10}.  Only the MEWMA 

steady state covariance matrix with r = 0.5 and the MC1 with k = 1.00 have a lower RMI 

score than the actual covariance matrix MEWMA with r = 0.15 when p = 2.  Even then 

the RMI scores only have a maximum difference of 0.02 between them.   

Regardless, the MMRC possesses the lowest RMI score with values less than or 

equal to 0.09 for all p = {2,3,10} and both configurations of aμ .  The stark contrast of the 

MMRC RMI scores versus the MC1 and MEWMA RMI scores is due to the narrow 

range of potential mean shift magnitudes where the MC1 and MEWMA have quick 

detection and the fact the chart is in-control for 50 observations.  This is shown in Tables 

B.7 through B.12 and discussed in Section 4.4.2. 

4.4.2 Table Comparison 
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In this section, Tables 4.9 through 4.11 assume [ ],0,0,...,0a δ=μ , and Tables 

4.12 through 4.14 assume [ ], , ,...,a δ δ δ δ=μ .  Again, for the same reasons in Section 

4.3.2, Tables 4.9 through 4.14 are abbreviated from Tables B.7 through B.12 in Appendix 

B. 

Table 4.9:  τ = 50, p = 2, μa = (δ,0) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.38 192.53 195.66 197.57 208.01 202.18 199.56

(1.92) (1.88) (2.05) (2.02) (2.33) (2.11) (2.04)
0.25 0.25 81.34 66.45 91.34 130.26 62.24 74.26 84.09

(0.67) (0.57) (0.88) (1.29) (0.60) (0.73) (0.83)
0.50 0.50 31.36 25.98 31.19 55.63 23.60 26.36 30.36

(0.22) (0.17) (0.26) (0.54) (0.18) (0.21) (0.26)
0.75 0.75 16.14 15.48 15.40 25.21 13.98 14.09 14.88

(0.10) (0.08) (0.10) (0.23) (0.09) (0.09) (0.10)
1.00 1.00 10.34 11.02 9.78 12.85 9.92 9.38 9.52

(0.06) (0.05) (0.06) (0.10) (0.06) (0.05) (0.06)
1.25 1.25 7.12 8.69 7.19 7.98 7.71 7.04 6.90

(0.04) (0.04) (0.04) (0.06) (0.04) (0.04) (0.04)
1.50 1.50 5.31 7.13 5.71 5.57 6.29 5.68 5.40

(0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
1.75 1.75 4.24 6.06 4.76 4.31 5.35 4.75 4.44

(0.02) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02)
2.00 2.00 3.42 5.31 4.12 3.49 4.66 4.12 3.80

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2.25 2.25 2.86 4.75 3.64 2.96 4.19 3.62 3.35

(0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01)
2.50 2.50 2.46 4.32 3.26 2.59 3.74 3.27 3.00

(0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01)
2.75 2.75 2.14 3.94 2.98 2.32 3.46 2.96 2.72
3.00 3.00 1.89 3.64 2.75 2.10 3.17 2.76 2.50
3.25 3.25 1.70 3.40 2.55 1.91 2.94 2.53 2.32
3.50 3.50 1.54 3.17 2.39 1.78 2.78 2.40 2.16
3.75 3.75 1.42 2.98 2.26 1.66 2.83 2.30 2.07
4.00 4.00 1.31 2.83 2.16 1.55 2.47 2.12 1.93
4.25 4.25 1.23 2.68 2.05 1.46 2.36 2.03 1.83
4.50 4.50 1.17 2.56 1.96 1.40 2.25 1.92 1.76
4.75 4.75 1.11 2.45 1.87 1.34 2.14 1.86 1.68
5.00 5.00 1.06 2.36 1.79 1.29 2.08 1.77 1.61

B = 6.66 h = 7.52 h = 4.78 h = 2.69 h4 = 7.86 h4 = 8.86 h4 = 9.39
RMI: 0.07 0.76 0.42 0.30 0.55 0.39 0.31

MC1 CUSUM MEWMA Actual Covariance Matrix

 
 

Table 4.9 illustrates when the MC1 and MEWMA are appropriately tuned they 

perform much better than the MMRC at detecting small shifts.  However, when 

considering the entire range of shifts, the MMRC is superior as indicated by the RMI 

score.  When compared with Table 4.2, the performance of both the MC1 and the 
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MEWMA decreases as De increases while the MMRC performance improves across the 

values of De.   

Table 4.10:  τ = 50, p = 3, μa = (δ,0,0) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 201.01 195.90 200.35 199.59 200.59 205.52 199.53

(1.96) (1.89) (1.99) (1.98) (2.30) (2.18) (2.10)
0.25 0.25 90.41 73.56 100.07 141.04 65.65 85.34 98.44

(0.74) (0.62) (0.96) (1.40) (0.65) (0.85) (0.97)
0.50 0.50 34.68 29.52 35.35 65.06 25.98 30.14 34.37

(0.23) (0.19) (0.29) (0.63) (0.20) (0.25) (0.30)
0.75 0.75 18.44 17.90 17.80 28.73 14.98 15.72 16.90

(0.11) (0.10) (0.12) (0.26) (0.10) (0.11) (0.12)
1.00 1.00 11.44 12.97 11.21 14.80 10.50 10.32 10.54

(0.07) (0.06) (0.06) (0.12) (0.06) (0.06) (0.06)
1.25 1.25 7.96 10.14 8.24 9.08 8.14 7.71 7.53

(0.04) (0.05) (0.04) (0.06) (0.05) (0.04) (0.04)
1.50 1.50 5.97 8.43 6.53 6.25 6.64 6.09 5.87

(0.03) (0.04) (0.03) (0.04) (0.04) (0.03) (0.03)
1.75 1.75 4.64 7.21 5.52 4.79 5.68 5.12 4.81

(0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02)
2.00 2.00 3.77 6.34 4.71 3.91 4.90 4.43 4.08

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
2.25 2.25 3.12 5.59 4.15 3.35 4.38 3.89 3.59

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01)
2.50 2.50 2.69 5.06 3.78 2.93 3.98 3.47 3.15

(0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01)
2.75 2.75 2.33 4.67 3.41 2.62 3.60 3.19 2.86
3.00 3.00 2.06 4.26 3.16 2.37 3.35 2.92 2.65
3.25 3.25 1.84 3.96 2.92 2.16 3.11 2.71 2.45
3.50 3.50 1.66 3.72 2.74 2.02 2.91 2.51 2.27
3.75 3.75 1.51 3.47 2.57 1.89 2.74 2.39 2.14
4.00 4.00 1.40 3.32 2.43 1.78 2.60 2.24 2.03
4.25 4.25 1.30 3.14 2.32 1.67 2.47 2.15 1.92
4.50 4.50 1.22 2.98 2.23 1.57 2.36 2.04 1.83
4.75 4.75 1.15 2.84 2.13 1.51 2.26 1.95 1.75
5.00 5.00 1.10 2.71 2.05 1.44 2.16 1.88 1.70

B = 7.94 h = 8.79 h = 5.55 h = 3.15 h4 = 9.97 h4 = 11.11 h4 = 11.62
RMI: 0.08 0.92 0.51 0.37 0.53 0.39 0.31

MEWMA Actual Covariance MatrixMC1 CUSUM

 
 

Tables 4.10 through 4.14 at 50τ =  are similar to tables 4.3 through 4.7 at 0τ = .  

Note the difference between Tables 4.9 through 4.11 and Tables 4.12 through 4.14 is 

negligible when the only change is the out-of-control mean vector aμ .  As such, once can 

conclude the choice of [ ],0,0,...,0a δ=μ  or [ ], , ,...,a δ δ δ δ=μ  has no effect on ARL 

performance.  Furthermore, the increase of p shows the same tapering decrease in ARL 

performance seen in the previous section for all charts and tuning parameters.   
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There are two main differences between the 50τ =  and 0τ =  cases.  The first is 

the consistently lower RMI of the MMRC to the other two charts.  The other difference is 

as p increases, the properly tuned MC1 requires more observations to detect than the 

MMRC.  For example, in Table 4.11, the MC1 ARL values for { }0.25,0.50,1.00k =  

corresponding to { }0.50,1.00, 2.00eD =  are { }48.30,18.22,6.24  versus 

{ }48.09,15.86,5.12  for the MMRC.  However, Tables 4.9 through 4.14 continue to show 

a properly tuned MEWMA requires fewer observations to detect than the MMRC over a 

narrow range of De mean shift magnitudes. Overall, when the ARL performance is taken 

over the entire range of tested De mean shift magnitudes and 50τ = , the MMRC is 

clearly the better chart. 
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Table 4.11:  τ = 50, p = 10, μa = (δ,0,0,…,0) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.13 199.09 204.68 202.99 208.78 202.92 199.05

(1.92) (2.06) (2.05) (1.94) (2.58) (2.29) (2.08)
0.25 0.25 113.42 105.73 127.87 159.73 88.63 112.94 130.05

(0.92) (0.91) (1.22) (1.57) (1.02) (1.23) (1.37)
0.50 0.50 48.09 48.30 52.38 90.15 33.38 44.01 54.99

(0.32) (0.31) (0.43) (0.88) (0.31) (0.43) (0.53)
0.75 0.75 25.27 29.72 27.01 43.13 18.69 21.23 25.74

(0.15) (0.16) (0.18) (0.39) (0.15) (0.17) (0.21)
1.00 1.00 15.86 21.79 18.22 22.41 12.97 13.39 14.83

(0.09) (0.11) (0.10) (0.18) (0.09) (0.09) (0.10)
1.25 1.25 11.11 17.25 13.79 13.40 9.89 9.54 10.18

(0.06) (0.08) (0.07) (0.09) (0.06) (0.06) (0.06)
1.50 1.50 8.16 14.23 11.06 9.59 7.94 7.59 7.68

(0.04) (0.06) (0.05) (0.06) (0.05) (0.04) (0.04)
1.75 1.75 6.33 12.12 9.37 7.48 6.80 6.20 6.16

(0.03) (0.05) (0.04) (0.04) (0.04) (0.03) (0.03)
2.00 2.00 5.12 10.55 8.13 6.24 5.82 5.29 5.13

(0.02) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02)
2.25 2.25 4.28 9.41 7.12 5.32 5.13 4.61 4.43

(0.02) (0.04) (0.03) (0.02) (0.03) (0.02) (0.02)
2.50 2.50 3.60 8.49 6.44 4.70 4.68 4.15 3.92

(0.01) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02)
2.75 2.75 3.10 7.68 5.82 4.20 4.25 3.71 3.51
3.00 3.00 2.71 7.06 5.35 3.79 3.92 3.43 3.21
3.25 3.25 2.43 6.56 4.96 3.48 3.62 3.10 2.93
3.50 3.50 2.18 6.10 4.60 3.21 3.42 2.94 2.74
3.75 3.75 1.98 5.75 4.31 3.03 3.19 2.74 2.55
4.00 4.00 1.80 5.38 4.04 2.83 3.01 2.59 2.40
4.25 4.25 1.65 5.12 3.84 2.67 2.87 2.46 2.27
4.50 4.50 1.53 4.85 3.60 2.53 2.73 2.33 2.15
4.75 4.75 1.42 4.60 3.44 2.43 2.61 2.23 2.06
5.00 5.00 1.33 4.40 3.30 2.31 2.50 2.15 1.97

B = 14.75 h = 15.33 h = 9.58 h = 5.53 h4 = 21.97 h4 = 23.32 h4 = 23.89
RMI: 0.09 1.43 0.91 0.61 0.39 0.28 0.27

MC1 CUSUM MEWMA Actual Covariance Matrix

 
 

65 



Table 4.12:  τ = 50, p = 2, μa = (δ,δ) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.38 190.87 197.64 195.69 204.67 203.45 200.95

(1.92) (1.88) (2.05) (2.02) (2.28) (2.13) (2.03)
0.25 0.18 83.17 65.93 90.19 128.61 62.02 74.49 83.54

(1.94) (0.55) (0.86) (1.27) (0.59) (0.73) (0.83)
0.50 0.35 31.16 25.71 31.42 55.89 23.97 26.80 30.34

(0.67) (0.17) (0.26) (0.54) (0.18) (0.22) (0.26)
0.75 0.53 16.39 15.50 15.42 25.15 14.09 14.03 15.11

(0.21) (0.08) (0.10) (0.23) (0.09) (0.09) (0.11)
1.00 0.71 10.27 11.07 9.80 13.06 9.81 9.47 9.39

(0.10) (0.05) (0.06) (0.11) (0.06) (0.05) (0.06)
1.25 0.88 7.20 8.61 7.22 8.06 7.78 7.06 6.86

(0.06) (0.04) (0.04) (0.06) (0.04) (0.04) (0.04)
1.50 1.06 5.39 7.14 5.69 5.58 6.32 5.68 5.38

(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)
1.75 1.24 4.20 6.11 4.78 4.29 5.40 4.78 4.45

(0.03) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02)
2.00 1.41 3.43 5.29 4.12 3.48 4.70 4.08 3.82

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)
2.25 1.59 2.85 4.78 3.64 2.96 4.17 3.64 3.32

(0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.01)
2.50 1.77 2.44 4.31 3.26 2.60 3.77 3.28 2.98

(0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01)
2.75 1.94 2.14 3.95 2.97 2.33 3.42 2.98 2.71
3.00 2.12 1.90 3.66 2.75 2.10 3.18 2.73 2.48
3.25 2.30 1.71 3.40 2.56 1.95 2.96 2.55 2.29
3.50 2.47 1.55 3.20 2.39 1.78 2.79 2.37 2.16
3.75 2.65 1.42 3.01 2.26 1.66 2.61 2.26 2.04
4.00 2.83 1.31 2.83 2.15 1.56 2.47 2.14 1.93
4.25 3.01 1.23 2.68 2.05 1.46 2.37 2.04 1.83
4.50 3.18 1.16 2.56 1.95 1.39 2.27 1.93 1.75
4.75 3.36 1.10 2.45 1.87 1.33 2.17 1.86 1.68
5.00 3.54 1.07 2.36 1.80 1.29 2.07 1.77 1.60

B = 6.66 h = 7.52 h = 4.78 h = 2.69 h4 = 7.86 h4 = 8.86 h4 = 9.39
RMI: 0.07 0.76 0.42 0.30 0.56 0.39 0.30

MEWMA Actual Covariance MatrixMC1 CUSUM
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Table 4.13:  τ = 50, p = 3, μa = (δ,δ,δ) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 201.01 195.81 199.87 199.73 198.18 207.20 200.99

(1.96) (1.89) (1.99) (1.98) (2.24) (2.17) (2.04)
0.25 0.14 89.82 73.56 100.07 141.04 66.64 84.19 96.97

(0.74) (0.62) (0.96) (1.40) (0.67) (0.83) (0.94)
0.50 0.29 34.96 29.52 35.35 65.06 25.97 29.72 34.97

(0.24) (0.19) (0.29) (0.63) (0.20) (0.24) (0.30)
0.75 0.43 18.14 17.90 17.80 28.73 14.98 16.01 16.94

(0.11) (0.10) (0.12) (0.26) (0.10) (0.11) (0.12)
1.00 0.58 11.27 12.97 11.21 14.80 10.49 10.40 10.45

(0.06) (0.06) (0.06) (0.12) (0.06) (0.06) (0.06)
1.25 0.72 7.94 10.14 8.24 9.08 8.13 7.71 7.47

(0.04) (0.05) (0.04) (0.06) (0.05) (0.04) (0.04)
1.50 0.87 5.97 8.43 6.53 6.25 6.69 6.12 5.86

(0.03) (0.04) (0.03) (0.04) (0.04) (0.03) (0.03)
1.75 1.01 4.63 7.21 5.52 4.79 5.65 5.11 4.80

(0.02) (0.03) (0.02) (0.03) (0.03) (0.02) (0.02)
2.00 1.15 3.76 6.34 4.71 3.91 4.91 4.38 4.08

(0.02) (0.03) (0.02) (0.02) (0.02) (0.02) (0.02)
2.25 1.30 3.15 5.59 4.15 3.35 4.37 3.89 3.55

(0.01) (0.02) (0.02) (0.01) (0.02) (0.02) (0.01)
2.50 1.44 2.68 5.06 3.78 2.93 3.95 3.49 3.19

(0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01)
2.75 1.59 2.32 4.67 3.41 2.62 3.59 3.17 2.88
3.00 1.73 2.06 4.26 3.16 2.37 3.32 2.91 2.66
3.25 1.88 1.85 3.96 2.92 2.16 3.09 2.71 2.44
3.50 2.02 1.67 3.72 2.74 2.02 2.90 2.54 2.28
3.75 2.17 1.50 3.47 2.57 1.89 2.72 2.38 2.15
4.00 2.31 1.40 3.32 2.43 1.78 2.59 2.25 2.04
4.25 2.45 1.30 3.14 2.32 1.67 2.47 2.13 1.92
4.50 2.60 1.21 2.98 2.23 1.57 2.35 2.03 1.84
4.75 2.74 1.15 2.84 2.13 1.51 2.26 1.95 1.76
5.00 2.89 1.10 2.71 2.05 1.44 2.15 1.88 1.69

B = 7.94 h = 8.79 h = 5.55 h = 3.15 h4 = 9.97 h4 = 11.11 h4 = 11.62
RMI: 0.07 0.91 0.51 0.37 0.52 0.38 0.31

MC1 CUSUM MEWMA Actual Covariance Matrix
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Table 4.14:  τ = 50, p = 10, μa = (δ,δ,δ,…,δ) 

Distance D e δ MMRC k = 0.25 k = 0.50 k = 1.00 r = 0.05 r = 0.1 r = 0.15
0.00 0.00 200.13 202.12 205.45 202.83 198.32 202.91 203.95

(1.92) (2.06) (2.05) (1.94) (2.47) (2.30) (2.13)
0.25 0.08 112.97 105.35 126.65 159.95 88.31 112.31 130.11

(0.94) (0.91) (1.22) (1.62) (1.00) (1.26) (1.34)
0.50 0.16 47.67 48.31 52.22 89.59 33.94 43.65 54.49

(0.31) (0.32) (0.43) (0.88) (0.31) (0.42) (0.52)
0.75 0.24 25.30 30.05 27.26 43.75 19.10 21.48 25.71

(0.15) (0.17) (0.18) (0.41) (0.15) (0.17) (0.21)
1.00 0.32 15.80 21.86 18.21 22.61 12.78 13.25 14.74

(0.09) (0.11) (0.10) (0.18) (0.09) (0.09) (0.10)
1.25 0.40 11.22 17.16 13.77 13.61 9.90 9.60 10.00

(0.06) (0.08) (0.07) (0.09) (0.06) (0.06) (0.06)
1.50 0.47 8.18 14.28 11.15 9.64 7.98 7.44 7.50

(0.04) (0.06) (0.05) (0.06) (0.05) (0.04) (0.04)
1.75 0.55 6.38 12.17 9.44 7.49 6.72 6.20 6.10

(0.03) (0.05) (0.04) (0.04) (0.04) (0.03) (0.03)
2.00 0.63 5.13 10.62 8.06 6.23 5.87 5.30 5.15

(0.02) (0.04) (0.04) (0.03) (0.03) (0.03) (0.02)
2.25 0.71 4.24 9.40 7.11 5.39 5.16 4.61 4.43

(0.02) (0.04) (0.03) (0.03) (0.03) (0.02) (0.02)
2.50 0.79 3.60 8.48 6.43 4.68 4.60 4.12 3.90

(0.02) (0.03) (0.03) (0.02) (0.03) (0.02) (0.02)
2.75 0.87 3.08 7.70 5.77 4.22 4.24 3.73 3.51
3.00 0.95 2.74 7.13 5.36 3.78 3.95 3.38 3.20
3.25 1.03 2.40 6.57 4.97 3.48 3.65 3.15 2.95
3.50 1.11 2.17 6.15 4.60 3.23 3.36 2.91 2.74
3.75 1.19 1.97 5.71 4.31 3.02 3.17 2.76 2.54
4.00 1.26 1.80 5.40 4.09 2.85 2.99 2.58 2.39
4.25 1.34 1.65 5.10 3.84 2.67 2.88 2.47 2.27
4.50 1.42 1.52 4.84 3.63 2.54 2.74 2.34 2.15
4.75 1.50 1.42 4.62 3.49 2.42 2.61 2.24 2.06
5.00 1.58 1.33 4.39 3.29 2.31 2.49 2.14 1.95

B = 14.75 h = 15.33 h = 9.58 h = 5.53 h4 = 21.97 h4 = 23.32 h4 = 23.89
RMI: 0.09 1.43 0.91 0.61 0.39 0.28 0.26

MC1 CUSUM MEWMA Actual Covariance Matrix

 
 

4.5 MMRC Change Point Performance 

Here the averages values of the MMRC’s built-in change point estimator, τ̂ , 

taken are displayed in Tables 4.15 and 4.16.  These τ̂  averages were obtained during the 

ARL performance simulations in Sections 4.3 and 4.4 using the methodology in Section 

4.2.  The top two rows give the configuration for the number of variables, p, and the-out-

of control mean, aμ , used.  The left most column of numbers corresponds to range of 

mean shifts De = {0.25,0.5,1.0,…,5}.  The lower-right 20 by 6 matrix gives the simulated 

average values for τ̂  given a specific p, aμ  and De. 
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Table 4.15: Change Point Estimator Performance when τ = 0 
p 2 3 10 2 3 10
μa (δ,0) (δ,0,0) (δ,0,…,0) (δ,δ) (δ,δ,δ) (δ,δ,…,δ)

0.25 31 33 38 31 34 37
0.5 19 21 30 19 22 29
0.75 12 13 18 11 13 18

1 7 8 12 8 8 12
1.25 5 6 9 5 6 9
1.5 4 4 6 4 4 6
1.75 3 3 5 3 3 5

2 2 3 4 2 2 4
2.25 2 2 3 2 2 3
2.5 1 2 2 1 2 2
2.75 1 1 2 1 1 2

3 1 1 2 1 1 2
3.25 1 1 1 1 1 1
3.5 1 1 1 1 1 1
3.75 0 1 1 0 1 1

4 0 0 1 0 0 1
4.25 0 0 1 0 0 1
4.5 0 0 1 0 0 1
4.75 0 0 0 0 0 0

5 0 0 0 0 0 0

D
e

 
 
In Table 4.15, when the process is out-of-control from the beginning, the MMRC 

has increased bias when detecting smaller shifts less than one.  Also, the more variables 

there are the less accurate the change point becomes.  Essentially, τ̂  is less biased when p 

is small and De is large. 

Table 4.16: Change Point Estimator Performance when τ = 50 
p 2 3 10 2 3 10
μa (δ,0) (δ,0,0) (δ,0,…,0) (δ,δ) (δ,δ,δ) (δ,δ,…,δ)

0.25 97 103 123 98 102 121
0.5 59 60 65 59 60 66
0.75 52 52 54 52 52 54

1 50 51 51 50 50 51
1.25 50 50 50 50 50 50
1.5 50 50 50 50 50 50
1.75 50 50 50 50 50 50

2 50 50 50 50 50 50
2.25 50 50 50 50 50 50
2.5 50 50 50 50 50 50
2.75 50 50 50 50 50 50

3 50 50 50 50 50 50
3.25 50 50 50 50 50 50
3.5 50 50 50 50 50 50
3.75 50 50 50 50 50 50

4 50 50 50 50 50 50
4.25 50 50 50 50 50 50
4.5 50 50 50 50 50 50
4.75 50 50 50 50 50 50

5 50 50 50 50 50 50

D
e
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For Table 4.16, when 50τ = , the average value of τ̂  is exact for De from 1.25 to 

5.00 and has a slight positive bias for 0.75 to 1.00.  Although this bias is lessened when 

0τ = , the chart still has a substantial positive bias under small mean shift changes.  

Again, τ̂  is less biased when p is small and De is large. 

4.6 MMRC CL (B) Regression Analysis 

Like the UMRC, a regression analysis was used to provide B values resulting in 

estimated ARL0 values from 50 to 300 and p from 2 to 10.  Using the heuristic in Section 

3.5, Figure 4.4 shows a 3D plot of the simulated B values.  The figure shows input ARL0 

on the x-axis, input number of factors p on the y-axis, and simulated response B on the z-

axis.  Estimates for B were simulated at all ARL0 = {50,100,150,200,250,300} versus p = 

{1,2,3,…,10} combinations for a total of 60 B estimates. 
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Figure 4.4:  Simulated B  Values 

 
Clearly, an increase in either ARL0 or p requires a larger B value.  In fact, the plot 

resembles a rising ridge in RSM analysis.  As a result, the following model is postulated: 
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 ( )
1

2 2
1 2 1 2 2 1 2

ˆ ,B x x c x x x x x x= + + + + + . (4.1) 

 
Here 1x  and 2x  are ARL0 and p respectively.  Using ordinary least squares, the following 

function was computed: 

 ( )
1

4 2 2 3
1 2 1 2 2 1 2

ˆ , 1.30 .0207 1.32 .368 .338 .428B x x x x E x x E x x− −= + + − − +  (4.2)

 
When plotted, Equation (4.2) results in Figure 4.5 and the absolute difference between the 

simulation and regression approximation is documented in Table 4.17. 

 

Figure 4.5:  Regressed B̂  Values 

 

Table 4.17: Absolute Difference Between B  and B̂  
p

ARL0 1 2 3 4 5 6 7 8 9 10
50 0.075 0.107 0.060 0.003 0.128 0.148 0.194 0.171 0.118 0.044
100 0.050 0.175 0.190 0.171 0.117 0.048 0.046 0.084 0.134 0.270
150 0.183 0.067 0.107 0.057 0.018 0.026 0.022 0.005 0.051 0.157
200 0.271 0.013 0.050 0.013 0.054 0.101 0.127 0.104 0.042 0.042
250 0.240 0.032 0.065 0.037 0.044 0.103 0.151 0.131 0.099 0.029
300 0.081 0.188 0.191 0.160 0.076 0.004 0.028 0.048 0.009 0.069  

 
While this approximation appears relatively accurate, the result is meaningless 

without checking the normality assumptions.  The diagnostic plots in Figure 4.6 and 

Figure 4.7 revealed no serious violation(s) of the normality assumption. 
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Figure 4.6:  Normal Probability Plot 
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Figure 4.7:  Regression vs. Residuals 

 

4.7 MEWMA Warm-Up Effect 

Unlike the MMRC and MC1, the MEWMA has a problem warming up.  In other 

words, the chart takes time to build enough previous data, and while it is in this build-up 

phase, the ARL0 changes if the CL, h4, is held constant.  This effect is more pronounced 

when the tuning parameter r is less than 0.10.  For example, Figure 4.8 shows the change 

in ARL0 with r = 0.05 and p = 2.  Because of this warm-up effect, the ARL0 increases 

with the actual covariance matrix and decreases with the steady-state covariance matrix.  

Furthermore, this is important because r = 0.05 provides superior ARL performance 

compared to the MMRC and MC1 when the change point, τ , is equal to zero (see 

Section 4.3).  Finally, the number of variables 10p ≤  had no impact on this warm-up 

effect. 
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Figure 4.8:  ARL0 with r = .05 and p = 2 

 
Figure 4.9 shows h4 values corresponding to a specific τ  obtained through 

simulation.  The value of h4 seems to rise until 30τ =  where it averages 7.83 on the τ  

interval [30,400].  This means approximately 30 in-control runs are necessary for this 

particular chart to warm up. 
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Figure 4.9:  Warm-Up Effect of τ  on h4 for ARL0 = 200 
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In their paper, Lowry et al. [8] do not refer to this problem and assume 0τ =  for 

all of their h4 calculations.  Table 4.18 shows h4 results tested at 0τ =  and 50τ =  for 15 

different settings of r and p using the heuristic in Section 3.5.  The table clearly indicates 

a lower r value results in a greater absolute difference between h4 at 0τ =  and 50τ = .  

For comparison, the h4 values by Lowry et al. are included which, in their paper they 

only include results for the r = 0.10 case. 

Table 4.18:  EWMA Inertia Comparison for ARL0 = 200 with 10,000 
Monte Carlo runs 

 

r p τ = 0 τ = 50 Absolute 
Difference

Lowry 
et. al. τ = 0 τ = 50 Absolute 

Difference
Lowry 
et. al.

0.05 2 7.71 7.86 0.15 7.31 7.60 0.30
0.1 2 8.79 8.86 0.07 8.79 8.66 8.77 0.11 8.66
0.2 2 9.36 9.39 0.03 9.31 9.39 0.07
0.5 2 10.50 10.50 0.00 10.46 10.42 0.05
0.8 2 10.64 10.63 0.01 10.58 10.59 0.01
0.05 3 9.82 9.97 0.15 9.39 9.66 0.27
0.1 3 10.99 11.11 0.12 10.97 10.82 10.94 0.11 10.79
0.2 3 11.57 11.62 0.05 11.52 11.58 0.06
0.5 3 12.71 12.70 0.01 12.69 12.71 0.02
0.8 3 12.82 12.78 0.05 12.86 12.86 0.00
0.05 10 21.41 21.97 0.56 20.76 21.06 0.31
0.1 10 22.98 23.32 0.34 22.91 22.56 22.92 0.36 22.67
0.2 10 23.70 23.89 0.19 23.53 23.59 0.06
0.5 10 25.07 25.00 0.07 25.06 25.04 0.02
0.8 10 25.16 25.20 0.05 25.21 25.22 0.01

MEWMA Actual Covariance Matrix MEWMA Steady-State Covariance Matrix

 
For these reasons, Sections 4.3 and 4.4 used separate h4 values corresponding to 0τ =  

and 50τ =  respectively. 

4.8 Conclusion 

For the results obtained in this chapter, a Monte Carlo simulation for evaluating 

ARL performance was employed.  By allowing for a flexible array of input variables, a 

QE can easily test simulation configurations not covered by this thesis.  Furthermore, the 

code is adaptable enough to easily use a variety of different charts. 
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Using this simulation, the ARL performance evaluation yielded some interesting 

results.  In the introduction, the following three questions were postulated with regard to 

ARL detection performance:  

1. “What effect does the change point position have?” 

2. “What effect does the number of out-of-control variables in the out-of-

control vector have?” 

3. “What effect does the number of variables in the process have? 

For question one, the change point had a profound effect on the ARL 

performance.  Overall, with two configuration exceptions, the MEWMA with r = 0.05 

using the actual covariance matrix universally took the fewest observations to detect 

when the process was initially out-of-control.  These two configuration exceptions are 

when the mean shift magnitude was 0.25 and 0.50, and the MEWMA took more 

observations to detect than the MC1 with k = 0.25.  However, generally speaking, when 

50τ = , the MMRC took fewer observations to detect whereas the MC1 and MEWMA 

took more observations to detect.  Furthermore, the MMRC’s detection ability was not 

universally superior to the MC1 or MEWMA when 50τ = .  In fact the MEWMA, 

properly tuned to a specific mean shift range, provided superior ARL performance to the 

MMRC for both.  Surprisingly, while the properly tuned MC1 at 0τ =  bested the 

MMRC’s detection ability for { }0.50,1.00, 2.00eD = , this was not the case when 50τ = .  

Here, as p increased, the MC1 was shown to gradually lose its detection superiority to the 

MMRC.  Furthermore, when taken across the entire range of tested mean shift 

magnitudes, the MMRC possesses the best ARL performance on the whole when 50τ = .  

This is evidenced by the low RMI scores received by the MMRC. 
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For question two, whether one variable shifted or all variables shifted in the out-

of-control mean vector made no significant difference in the results.  This is likely due to 

both cases having the same distance, De, regardless of the number of shifted variables. 

For question three, by and large, the more variables a process it has, the more 

observations a chart will take to detect a change.  This is true for all three charts and all 

tested shift magnitudes.  Fortunately this increase is not linear and appears to follow 

logarithmic scale. 

Next, the ordinary least squares method was used to develop an estimator 

(Equation (4.2)) for the MMRC CL when given ARL0 and the number of variables in the 

process.  When this estimator was compared to the simulated values, the largest residual 

was 0.271 with an average residual of 0.094.  As a result, the estimator provides accurate 

CL estimates for up to 10 variables and an ARL0 on the interval [50,300]. 

Lastly, the MEWMA warm up effect was discussed.  This means the MEWMA, 

given a static CL, was found to have different ARL0 values depending on the actual 

change point.  The results showed the effect was most pronounced when the tuning 

parameter, r, was less than 0.10.  Since this effect would skew the ARL performance 

evaluations, different CLs for each of the change points were used in these evaluations. 
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V.  Recommendations and Future Research 

5.1 Introduction 

This thesis presented the MMRC:  a new multivariate mean shift control chart 

using multiple variables without the need for a tuning parameter.  The word robust in the 

acronym MMRC refers to the chart’s ability to perform well over a wide range of 

potential change magnitudes.  Additionally, the MMRC is quite unique among 

multivariate control charts in its ability to provide the maximum likelihood estimate for 

the process change point immediately following a signal.  In order to evaluate the current 

state of the art, this new chart’s ARL performance was compared to two other existing 

multivariate charts, the MC1 and MEWMA. 

In order to accomplish the goal of a multivariate magnitude robust control chart 

containing a change point estimator, a change point model using a log-likelihood-ratio 

test was employed.  The change point model means the process is considered in-control 

until an unknown time τ  where the mean vector has an immediate and sharp shift to an 

out-of-control state.  In other words, all observations up to τ  are in-control with the first 

out-of-control observation taken at τ  + 1.  With the change point model in place, a log-

likelihood-ratio test was used to detect a sudden shift in the mean vector.  This log-

likelihood-ratio test was maximized over all potential change points to obtain the greatest 

separation between the in-control and out-of-control mean vector.  Once this test exceeds 

a predetermined CL, the process is considered out-of-control, and the change point 

maximizing the log-likelihood-ratio test becomes the MLE for τ , denoted as τ̂ .  
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Additionally, τ̂  is used to create the MLE for the out-of-control mean vector.  As a result 

of using log-likelihood-ratios, no tuning parameter is needed. 

With no closed-form solution for the MMRC CL available, a simulation based 

heuristic was developed to generate CL values.  This heuristic repeatedly increments and 

decrements candidate CLs until the resulting simulated ARL0 values are within a 

specified tolerance limit.  On a fairly modern PC, this heuristic takes only a few hours to 

output a control limit.  To speed this process up further, this heuristic was run over a 

range of variables in the process and desired ARL0 values.  Taking this data and applying 

a regression model, a closed-form equation to obtain CL estimates was constructed. 

Comparison was accomplished using Monte Carlo simulation to evaluate ARL 

performance.  By setting the ARL0 to 200 and the simulation run size to 10,000, direct 

comparison between the MMRC, MC1 and MEWMA was accomplished over two 

change points, three different number of variables and twenty mean shift distances.  

Additionally, the case where one variable in the out-of-control mean shifts was contrasted 

with the case where all variables in the out-of-control mean shift.  Furthermore, the RMI 

was used to interpret the results.  The RMI provides a singular measure of performance 

among several control charts over a range of tested change magnitudes.  These results 

were presented in tabular form along with the RMI for each chart. 

These simulation results showed the location of the change point, the number of 

variables and the magnitude of the mean shift were all significant in influencing ARL 

performance.  A smaller mean shift magnitude and/or larger number of variables 

contributed to slower detection of the out-of-control process.  The most profound 

difference came from the selection of the change point.  In general, the performance of 
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the MMRC increased when the process was initially in-control for a period before going 

out-of-control and the MC1 and MEWMA was detected faster when the process was 

initially out-of-control.  With regard to the RMI scores, the MC1 detected slowest over 

the entire range of tested sudden mean shifts, the MMRC detected quickest when 50τ =  

and the MEWMA detected quickest when 0τ = .  Only the variation of one variable 

versus all variables shifting in the out-of-control mean did not have an effect on ARL 

performance.   

Finally, the average τ̂  results gathered from the ARL performance simulation 

were presented.  These results showed τ̂  has less positive bias at 50τ =  than when 

0τ = .  Under both change points, τ̂  is highly biased for small out-of-control mean shifts 

and bias also increased as the number of variables increased. 

5.2 Analysis Recommendation 

While the MMRC possesses superior ARL performance when the process was in-

control for a given time period, the chart clearly does not perform as well when the 

process is out-of-control initially.  However, the MEWMA possesses superior ARL 

performance when the process is initially out-of-control.  These results were shown in 

Sections 4.3 and 4.4.  As a result, the practical recommendation use the MEWMA actual 

covariance matrix with r = 0.05 if the QE is uncertain whether the process will be in-

control from the beginning.  This situation could occur if one is basing the chart 

potentially faulty historical data.  However, if the QE is highly confident his/her process 

will be initially in-control, use the MMRC for detection. 
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Also, when the MMRC detects a shift, the QE must keep in mind change point 

estimator τ̂  is positively biased when small shifts are detected.  Conscious understanding 

of this limitation may prevent a costly search for causality. 

5.3 Future Research Recommendations 

This research is one of many possible approaches to the burgeoning yet 

incomplete field of multivariate control charts.  This section will attempt to give 

suggestions and ideas for future research beyond the scope of this thesis. 

To begin, if one relaxes one’s assumptions, then one is almost always presented 

with interesting research problems.  A major assumption of the MMRC is the assumption 

on normally distributed observations.  While assuming normality is appropriate in many 

processes, it is not universally appropriate.  For example, count data (i.e. product 

scratches) often follow a Poisson distribution.  Applying a change point model and 

likelihood-ratio to other relevant distributions could generate new and improved control 

charts. 

Another way to improve the MMRC is to consider autocorrelation.  As the 

proposed methodology currently stands, it only considers cross-correlation between the 

variables.  There is a need to extend the MMRC so it considers serial correlation. 

In this thesis, all observations were pulled from a standard multivariate normal 

distribution.  Performance when the normality assumption is violated was not considered.  

If charts were calculated using anything other than standard multivariate normal, then the 

results of this thesis are not applicable.  Research into this area would illustrate the 

robustness of each chart to probability distribution violations. 
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Since the MMRC is a new chart, only one type of process change was considered 

and this is a sudden mean shift.  However this is not the only type of process change.  

Linear or exponential trend shifts are often found in practice, however, these were not 

studied here.  A study under these different assumptions would create a more complete 

picture of the MMRC’s performance. 

In addition to only one type of shift, only a static in-control mean of zero was 

used.  Unfortunately, if the in-control state is periodic and/or sinusoidal, then one would 

likely have to deal with frequent false alarms.  Thus, an investigation into different in-

control states would extend the MMRC into these areas. 
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The following are the complete derivations from chapter three. 
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 Appendix B 
 
The following pages contain the complete MMRC ARL data tables from chapter four. 
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